Jacobsen, Jennifer A.; Fullagar, Jessica L.; Miller, Melissa T.; Cohen, Seth M. published an article about the compound: 6-Hydroxy-2-methylpyrimidin-4(3H)-one( cas:1194-22-5,SMILESS:CC1=NC(=CC(N1)=O)O ).Safety of 6-Hydroxy-2-methylpyrimidin-4(3H)-one. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1194-22-5) through the article.
Fragment-based lead design (FBLD) has been used to identify new metal-binding groups for metalloenzyme inhibitors. When screened at 1 mM, a chelator fragment library (CFL-1.1) of 96 compounds produced hit rates ranging from 29% to 43% for five matrix metalloproteases (MMPs), 24% for anthrax lethal factor (LF), 49% for 5-lipoxygenase (5-LO), and 60% for tyrosinase (TY). The ligand efficiencies (LE) of the fragment hits are excellent, in the range of 0.4-0.8 kcal/mol. The MMP enzymes all generally elicit the same chelators as hits from CFL-1.1; however, the chelator fragments that inhibit structurally unrelated metalloenzymes (LF, 5-LO, TY) vary considerably. To develop more advanced hits, one hit from CFL-1.1, 8-hydroxyquinoline, was elaborated at four different positions around the ring system to generate new fragments. 8-Hydroxyquinoline fragments substituted at either the 5- or 7-positions gave potent hits against MMP-2, with IC50 values in the low micromolar range. The 8-hydroxyquinoline represents a promising new chelator scaffold for the development of MMP inhibitors that was discovered by use of a metalloprotein-focused chelator fragment library.
Although many compounds look similar to this compound(1194-22-5)Safety of 6-Hydroxy-2-methylpyrimidin-4(3H)-one, numerous studies have shown that this compound(SMILES:CC1=NC(=CC(N1)=O)O), has unique advantages. If you want to know more about similar compounds, you can read my other articles.
Reference:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem