Li, Juanjuan et al. published their research in ACS Applied Materials & Interfaces in 2018 | CAS: 13590-42-6

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Multifunctional micelles dually responsive to hypoxia and singlet oxygen: Enhanced photodynamic therapy via interactively triggered Photosensitizer Delivery was written by Li, Juanjuan;Meng, Xuan;Deng, Jian;Lu, Di;Zhang, Xin;Chen, Yanrui;Zhu, Jundong;Fan, Aiping;Ding, Dan;Kong, Deling;Wang, Zheng;Zhao, Yanjun. And the article was included in ACS Applied Materials & Interfaces in 2018.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate This article mentions the following:

Nanoparticulate antitumor photodynamic therapy (PDT) has been suffering from the limited dose accumulation in tumor. Herein, we report dually hypoxia- and singlet oxygen-responsive polymeric micelles to efficiently utilize the photosensitizer deposited in the disease site and hence facilely improve PDT’s antitumor efficacy. Tailored methoxy poly(ethylene glycol)-azobenzene-poly(aspartic acid) copolymer conjugate with imidazole as the side chains was synthesized. The conjugate micelles (189 ± 19 nm) obtained by self-assembly could efficiently load a model photosensitizer, chlorin e6 (Ce6) with a loading of 4.1 ± 0.5% (weight/weight). The facilitated cellular uptake of micelles was achieved by the triggered azobenzene collapse that provoked poly(ethylene glycol) shedding; rapid Ce6 release was enabled by imidazole oxidation that induced micelle disassembly. In addition, the singlet oxygen-mediated cargo release not only addressed the limited diffusion range and short half-life of singlet oxygen but also decreased the oxygen level, which could in turn enhance internalization and increase the intracellular Ce6 concentration The hypoxia-induced dePEGylation and singlet oxygen-triggered Ce6 release was demonstrated both in aqueous buffer and in Lewis lung carcinoma (LLC) cells. The cellular uptake study demonstrated that the dually responsive micelles could deliver significantly more Ce6 to the cells, which resulted in a substantially improved cytotoxicity. This concurred well with the superior in vivo antitumor ability of micelles in a LLC tumor-bearing mouse model. This study presented an intriguing nanoplatform to realize interactively triggered photosensitizer delivery and improved antitumor PDT efficacy. In the experiment, the researchers used many compounds, for example, (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate).

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Referemce:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem

 

Chang, Yi-Hao et al. published their research in Journal of Controlled Release in 2021 | CAS: 13590-42-6

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidine-based compounds are well-known chiral auxiliaries and strategic molecular moieties in chemistry since they can effectively mask or mimic amino acid units or amino alcohols. In another report, the incorporation of an additional substituted oxazolidine ring over a range of new biphenylazepinium salt organocatalysts for the asymmetric epoxidation of alkenes improved enantiocontrol over the parent structures.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Polyplex nanomicelle delivery of self-amplifying RNA vaccine was written by Chang, Yi-Hao;Lin, Mei-Wei;Chien, Ming-Chen;Ke, Guan-Ming;Wu, I-En;Lin, Ren-Li;Lin, Chin-Yu;Hu, Yu-Chen. And the article was included in Journal of Controlled Release in 2021.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate This article mentions the following:

Self-amplifying RNA (SaRNA) is a burgeoning platform that exploits the replication machinery of alphaviruses such as Venezuelan equine encephalitis (VEE) virus or Sindbis virus (SIN). SaRNA has been used for development of human vaccines, but has not been evaluated for porcine vaccine development. Porcine reproductive and respiratory syndrome virus (PRRSV) causes tremendous economic losses to the worldwide pork industry, but current vaccines trigger delayed neutralizing antibody response and confer only partial protection. Here we first compared two SaRNA systems based on VEE and SIN, and demonstrated that in vitro transcribed VEE-based SaRNA conferred prolonged reporter gene expression and RNA amplification in pig cells with low cytotoxicity, but SIN-based SaRNA imparted evident cytotoxicity and limited gene expression in pig cells. Transfection of VEE-based SaRNA that encodes the major PRRSV antigen dNGP5 (SaRNA-dNGP5) conferred persistent expression for at least 28 days in pig cells. We next complexed SaRNA-dNGP5 with the polyaspartamide block copolymer PEG-PAsp(TEP) to form polyplex nanomicelle with high packaging efficiency and narrow size distribution. The polyplex nanomicelle enabled sustained dNGP5 expression and secretion in vitro. Compared with the com. PRRS vaccine, nanomicelle delivery of SaRNA-dNGP5 into animal models accelerated the induction of potent neutralizing antibodies with minimal side effects, and elicited stronger IL-4 and IFN-γ responses against homologous and heterologous PRRSV. These properties tackle the problems of current vaccines and implicate the potential of SaRNA-dNGP5 nanomicelle as an effective PRRS vaccine. In the experiment, the researchers used many compounds, for example, (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate).

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidine-based compounds are well-known chiral auxiliaries and strategic molecular moieties in chemistry since they can effectively mask or mimic amino acid units or amino alcohols. In another report, the incorporation of an additional substituted oxazolidine ring over a range of new biphenylazepinium salt organocatalysts for the asymmetric epoxidation of alkenes improved enantiocontrol over the parent structures.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Referemce:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem

 

Hu, Jun et al. published their research in Bioconjugate Chemistry in 2018 | CAS: 13590-42-6

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. A common way to produce multisubstituted oxazolidines is by means of cycloaddition reactions. In another report, the incorporation of an additional substituted oxazolidine ring over a range of new biphenylazepinium salt organocatalysts for the asymmetric epoxidation of alkenes improved enantiocontrol over the parent structures.Application In Synthesis of (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Redox-responsive biomimetic polymeric micelle for simultaneous anticancer drug delivery and aggregation-induced emission active imaging was written by Hu, Jun;Zhuang, Weihua;Ma, Boxuan;Su, Xin;Yu, Tao;Li, Gaocan;Hu, Yanfei;Wang, Yunbing. And the article was included in Bioconjugate Chemistry in 2018.Application In Synthesis of (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate This article mentions the following:

Intelligent polymeric micelles have been developed as potential nanoplatforms for efficient drug delivery and diagnosis. Herein, we successfully prepared redox-sensitive polymeric micelles combined aggregation-induced emission (AIE) imaging as an outstanding anticancer drug carrier system for simultaneous chemotherapy and bioimaging. The amphiphilic copolymer TPE-SS-PLAsp-b-PMPC could self-assemble into spherical micelles, and these biomimetic micelles exhibited great biocompatibility and remarkable ability in antiprotein adsorption, showing great potential for biomedical application. Anticancer drug doxorubicin (DOX) could be encapsulated during the self-assembly process, and these drug-loaded micelles showed intelligent drug release and improved antitumor efficacy due to the quick disassembly in response to high levels of glutathione (GSH) in the environment. Moreover, the intracellular DOX release could be traced through the fluorescent imaging of these AIE micelles. As expected, the in vivo antitumor study exhibited that these DOX-carried micelles showed better antitumor efficacy and less adverse effects than that of free DOX. These results strongly indicated that this smart biomimetic micelle system would be a prominent candidate for chemotherapy and bioimaging. In the experiment, the researchers used many compounds, for example, (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6Application In Synthesis of (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate).

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. A common way to produce multisubstituted oxazolidines is by means of cycloaddition reactions. In another report, the incorporation of an additional substituted oxazolidine ring over a range of new biphenylazepinium salt organocatalysts for the asymmetric epoxidation of alkenes improved enantiocontrol over the parent structures.Application In Synthesis of (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Referemce:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem

 

Wang, Zheng et al. published their research in Journal of Colloid and Interface Science in 2022 | CAS: 13590-42-6

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Some reports highlighted again the effectiveness of oxazolidine-based compounds in driving the stereo- or diastereotopic outcome of chemical reactions.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Hypoxia-responsive nanocarriers for chemotherapy sensitization via dual-mode inhibition of hypoxia-inducible factor-1 alpha was written by Wang, Zheng;Mu, Xuewen;Yang, Qian;Luo, Jiajia;Zhao, Yanjun. And the article was included in Journal of Colloid and Interface Science in 2022.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate This article mentions the following:

The overexpression of hypoxia-inducible factor-1 alpha (HIF-1α) in solid tumor compromises the potency of chemotherapy under hypoxia. The high level of HIF-1α arises from the stabilization effect of reduced NAD (phosphate) NAD(P)H: quinone oxidoreductase 1 (NQO1). It was postulated that the inhibition of NQO1 could degrade HIF-1α and sensitize hypoxic cancer cells to antineoplastic agents. In the current work, we report hypoxia-responsive polymer micelles, i.e. methoxyl poly(ethylene glycol)-co-poly(aspartate-nitroimidazole) orchestrate with a NQO1 inhibitor (dicoumarol) to sensitize the ovarian cancer cell line (SKOV3) to a model anticancer agent (sorafenib) at low oxygen conditions. Both cargos were phys. encapsulated in the nanoscale micelles. The placebo micelles transiently induced the depletion of reduced NADP (NADPH) as well as glutathione and thioredoxin under hypoxia, which further inactivated NQO1 because NADPH was the cofactor of NQO1. As a consequence, the expression of HIF-1α was repressed due to the dual action of dicoumarol and polymer. The degradation of HIF-1α significantly increased the vulnerability of SKOV3 cells to sorafenib-induced apoptosis, as indicated by the enhancement of cytotoxicity, and increase of caspase 3 and cytochrome C. The current work opens new avenues of addressing hypoxia-induced drug resistance in chemotherapy. In the experiment, the researchers used many compounds, for example, (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate).

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Some reports highlighted again the effectiveness of oxazolidine-based compounds in driving the stereo- or diastereotopic outcome of chemical reactions.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Referemce:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem

 

Yang, Zhe et al. published their research in Colloids and Surfaces, B: Biointerfaces in 2017 | CAS: 13590-42-6

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidine-based compounds are well-known chiral auxiliaries and strategic molecular moieties in chemistry since they can effectively mask or mimic amino acid units or amino alcohols. In another report, the incorporation of an additional substituted oxazolidine ring over a range of new biphenylazepinium salt organocatalysts for the asymmetric epoxidation of alkenes improved enantiocontrol over the parent structures.Category: oxazolidine

pH and redox dual-responsive multifunctional gene delivery with enhanced capability of transporting DNA into the nucleus was written by Yang, Zhe;Li, Yingqin;Gao, Jinbiao;Cao, Zhong;Jiang, Qing;Liu, Jie. And the article was included in Colloids and Surfaces, B: Biointerfaces in 2017.Category: oxazolidine This article mentions the following:

Stimuli-responsive gene delivery vectors based on physiol. triggered structure changing have been recently recognized as a new therapeutic agent for their excellent performance in vivo. Herein, we present an intelligent gene delivery system based on the octa-arginine peptides (R8)-conjugated polyamino acid derivatives noted as PPCRC (PVIm-(PAsp-Cystamine-R8)-Cholesteryl), which processed pH responsive, surface charge-switching, intracellular redox-responsive and enhanced nucleus import of gene together. Due to the imidazole group in the PPCRC backbone, the DNA/PPCRC polyplexes not only exhibited the enhanced buffering capacity in the endosome after endocytosis, but also displayed the reversible surface charge from neg. to pos. with decreasing the pH value form pH 7.4 to pH 6.5-6.8, which would promote the cell membrane binding and cellular uptake. The disulfide bond for R8 peptides conjugation in the polymer side chain could be rapidly cleaved under reductive conditions, facilitating DNA release in the cytoplasm. Subsequently, the DNA would be still associated with the R8 peptides, which would promote the intracellular nucleus import of DNA. The luciferase gene expression level of COS-7 cells transfected by DNA/PPCRC polyplexes was almost 2000 folds higher than cells transfected by DNA/PPCC polyplexes (without R8 peptides modification) in growth-arrested cell model. Nearly 10 folds enhanced gene transfection efficiency was found on human bone mesenchymal stem cells (hBMSCs) using the same strategy, which revealed that this intelligent vector can be also utilized in transfection of non-dividing cells. I.v. injection of the DNA/PPCRC polyplexes also achieved the effective transfection in s.c. tumor model. Taken together, PPCRC vector has great potential for both dividing and non-dividing cells transfection and in vivo gene delivery application. In the experiment, the researchers used many compounds, for example, (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6Category: oxazolidine).

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidine-based compounds are well-known chiral auxiliaries and strategic molecular moieties in chemistry since they can effectively mask or mimic amino acid units or amino alcohols. In another report, the incorporation of an additional substituted oxazolidine ring over a range of new biphenylazepinium salt organocatalysts for the asymmetric epoxidation of alkenes improved enantiocontrol over the parent structures.Category: oxazolidine

Referemce:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem

 

Yang, Zhe et al. published their research in Colloids and Surfaces, B: Biointerfaces in 2017 | CAS: 13590-42-6

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidine-based compounds are well-known chiral auxiliaries and strategic molecular moieties in chemistry since they can effectively mask or mimic amino acid units or amino alcohols. In another report, the incorporation of an additional substituted oxazolidine ring over a range of new biphenylazepinium salt organocatalysts for the asymmetric epoxidation of alkenes improved enantiocontrol over the parent structures.Category: oxazolidine

pH and redox dual-responsive multifunctional gene delivery with enhanced capability of transporting DNA into the nucleus was written by Yang, Zhe;Li, Yingqin;Gao, Jinbiao;Cao, Zhong;Jiang, Qing;Liu, Jie. And the article was included in Colloids and Surfaces, B: Biointerfaces in 2017.Category: oxazolidine This article mentions the following:

Stimuli-responsive gene delivery vectors based on physiol. triggered structure changing have been recently recognized as a new therapeutic agent for their excellent performance in vivo. Herein, we present an intelligent gene delivery system based on the octa-arginine peptides (R8)-conjugated polyamino acid derivatives noted as PPCRC (PVIm-(PAsp-Cystamine-R8)-Cholesteryl), which processed pH responsive, surface charge-switching, intracellular redox-responsive and enhanced nucleus import of gene together. Due to the imidazole group in the PPCRC backbone, the DNA/PPCRC polyplexes not only exhibited the enhanced buffering capacity in the endosome after endocytosis, but also displayed the reversible surface charge from neg. to pos. with decreasing the pH value form pH 7.4 to pH 6.5-6.8, which would promote the cell membrane binding and cellular uptake. The disulfide bond for R8 peptides conjugation in the polymer side chain could be rapidly cleaved under reductive conditions, facilitating DNA release in the cytoplasm. Subsequently, the DNA would be still associated with the R8 peptides, which would promote the intracellular nucleus import of DNA. The luciferase gene expression level of COS-7 cells transfected by DNA/PPCRC polyplexes was almost 2000 folds higher than cells transfected by DNA/PPCC polyplexes (without R8 peptides modification) in growth-arrested cell model. Nearly 10 folds enhanced gene transfection efficiency was found on human bone mesenchymal stem cells (hBMSCs) using the same strategy, which revealed that this intelligent vector can be also utilized in transfection of non-dividing cells. I.v. injection of the DNA/PPCRC polyplexes also achieved the effective transfection in s.c. tumor model. Taken together, PPCRC vector has great potential for both dividing and non-dividing cells transfection and in vivo gene delivery application. In the experiment, the researchers used many compounds, for example, (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6Category: oxazolidine).

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidine-based compounds are well-known chiral auxiliaries and strategic molecular moieties in chemistry since they can effectively mask or mimic amino acid units or amino alcohols. In another report, the incorporation of an additional substituted oxazolidine ring over a range of new biphenylazepinium salt organocatalysts for the asymmetric epoxidation of alkenes improved enantiocontrol over the parent structures.Category: oxazolidine

Referemce:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem

 

Wang, Zheng et al. published their research in Journal of Colloid and Interface Science in 2022 | CAS: 13590-42-6

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Some reports highlighted again the effectiveness of oxazolidine-based compounds in driving the stereo- or diastereotopic outcome of chemical reactions.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Hypoxia-responsive nanocarriers for chemotherapy sensitization via dual-mode inhibition of hypoxia-inducible factor-1 alpha was written by Wang, Zheng;Mu, Xuewen;Yang, Qian;Luo, Jiajia;Zhao, Yanjun. And the article was included in Journal of Colloid and Interface Science in 2022.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate This article mentions the following:

The overexpression of hypoxia-inducible factor-1 alpha (HIF-1α) in solid tumor compromises the potency of chemotherapy under hypoxia. The high level of HIF-1α arises from the stabilization effect of reduced NAD (phosphate) NAD(P)H: quinone oxidoreductase 1 (NQO1). It was postulated that the inhibition of NQO1 could degrade HIF-1α and sensitize hypoxic cancer cells to antineoplastic agents. In the current work, we report hypoxia-responsive polymer micelles, i.e. methoxyl poly(ethylene glycol)-co-poly(aspartate-nitroimidazole) orchestrate with a NQO1 inhibitor (dicoumarol) to sensitize the ovarian cancer cell line (SKOV3) to a model anticancer agent (sorafenib) at low oxygen conditions. Both cargos were phys. encapsulated in the nanoscale micelles. The placebo micelles transiently induced the depletion of reduced NADP (NADPH) as well as glutathione and thioredoxin under hypoxia, which further inactivated NQO1 because NADPH was the cofactor of NQO1. As a consequence, the expression of HIF-1α was repressed due to the dual action of dicoumarol and polymer. The degradation of HIF-1α significantly increased the vulnerability of SKOV3 cells to sorafenib-induced apoptosis, as indicated by the enhancement of cytotoxicity, and increase of caspase 3 and cytochrome C. The current work opens new avenues of addressing hypoxia-induced drug resistance in chemotherapy. In the experiment, the researchers used many compounds, for example, (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate).

(S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate (cas: 13590-42-6) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Some reports highlighted again the effectiveness of oxazolidine-based compounds in driving the stereo- or diastereotopic outcome of chemical reactions.Name: (S)-Benzyl 2-(2,5-dioxooxazolidin-4-yl)acetate

Referemce:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem