Ligand Design for Isomer-Selective Oxorhenium(V) Complex Synthesis was written by Liu, Jinyong; Su, Xiaoge; Han, Mengwei; Wu, Dimao; Gray, Danielle L.; Shapley, John R.; Werth, Charles J.; Strathmann, Timothy J.. And the article was included in Inorganic Chemistry on February 6,2017.Category: oxazolidine The following contents are mentioned in the article:
Recently, N,N-trans Re(O)(LN-O)2X (LN-O = monoanionic N-O chelates; X = Cl or Br prior to being replaced by solvents or alkoxides) complexes are superior to the corresponding N,N-cis isomers in the catalytic reduction of perchlorate via oxygen atom transfer. However, reported methods for Re(O)(LN-O)2X synthesis often yield only the N,N-cis complex or a mixture of trans and cis isomers. This study reports a geometry-inspired ligand design rationale that selectively yields N,N-trans Re(O)(LN-O)2Cl complexes. Anal. of the crystal structures revealed that the dihedral angles (DAs) between the two LN-O ligands of N,N-cis Re(O)(LN-O)2Cl complexes are <90°, whereas the DAs in most N,N-trans complexes are >90°. Variably sized alkyl groups (-Me, -CH2Ph, and -CH2Cy) were then introduced to the 2-(2′-hydroxyphenyl)-2-oxazoline (Hhoz) ligand to increase steric hindrance in the N,N-cis structure, and substituents as small as -Me completely eliminate the formation of N,N-cis isomers. The generality of the relation between N,N-trans/cis isomerism and DAs is further established from a literature survey of 56 crystal structures of Re(O)(LN-O)2X, Re(O)(LO-N-N-O)X, and Tc(O)(LN-O)2X congeners. D. functional theory calculations support the general strategy of introducing ligand steric hindrance to favor synthesis of N,N-trans Re(O)(LN-O)2X and Tc(O)(LN-O)2X complexes. This study demonstrates the promise of applying rational ligand design for isomeric control of metal complex structures, providing a path forward for innovations in a number of catalytic, environmental, and biomedical applications. This study involved multiple reactions and reactants, such as 2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1Category: oxazolidine).
2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. Oxazolidines are commonly obtained by reaction of strained heterocycles, mainly aziridines. As well as other multifunctional heterocyclic compounds, oxazolidine rings play an essential role in organic and medicinal chemistry, behaving, in some cases as powerful antitumor agents.Category: oxazolidine
163165-91-1;2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol;The future of 163165-91-1;New trend of C11H13NO2;function of 163165-91-1