Synthetic Route of 497-25-6, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps.In a article, 497-25-6, molcular formula is C3H5NO2, introducing its new discovery.
The role of oxazolidine derivatives in the treatment of infectious and chronic diseases
Background: Despite being known for their antibacterial activity, the oxazolidines are molecules with wide pharmacological action and may act as anticonvulsants, anti-inflammatory and antineoplasic agents. However, such activities have been poorly explored and only two oxazolidinic derivatives hit the market until now. Therefore, this review covers the main biological activities of oxazolidines, indicating which of the classes and substituents have the best biological results as well as the synthesis methodology used to obtain them. Methods: The search for bibliographic data was made using a question focused on the oxazolidine structure and their respective activities, besides using inclusion/exclusion criteria clearly defined. The selected papers were subjected to qualitative content analysis methodology to be used in this review. Results: The oxazolidines remain excellent candidates for antibacterial, presenting three compounds in clinical testing phase (Radezolide, Cadezolide and Sutezolide), besides being a good candidate as antitubercular agents. Other less explored activities have niches with a great therapeutic potential such as the oxazolidines acting on 5-HT receptors (anticonvulsant) and Zolmitriptan (anti-migraine), and also mefloquine-oxazolidine derivatives which may act as antineoplasic and antitubercular agents. Conclusion: This review summarizes the versatility and great therapeutic potential that oxazolidines can offer, reinforcing the need for further studies and investments for this class of molecules.
The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 497-25-6 is helpful to your research. Synthetic Route of 497-25-6
Reference£º
Oxazolidine – Wikipedia,
Oxazolidine | C3H366NO – PubChem