Synthetic Route of Br2Cu. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: Cupric bromide, is researched, Molecular Br2Cu, CAS is 7789-45-9, about Imine-based covalent organic framework as photocatalyst for visible-light-induced atom transfer radical polymerization.
Photoinduced atom transfer radical polymerization (ATRP) is an economical and environment-friendly method for synthesizing polymers with pre-designable structures and precise mol. weight Although significant progress for copper-mediated photoinduced ATRP has been achieved, several drawbacks still remain, such as poor electron transfer capability and absorption bands of photocatalysts near UV region. Herein, imine-based covalent organic framework, TAPPy-TPA-COF, has been synthesized as potential heterogeneous photocatalyst for photoinduced ATRP. The “”living”” feature of polymerizations of Me methacrylate (MMA) can be well controlled by efficiency maintain the balance between activation and inactivation of CuI and CuII. The chain extension experiments have further demonstrated the chain-end fidelity of polymers. Meanwhile, the catalyst recycle experiments have revealed stability of TAPPy-TPA-COF toward ATRP processes. These results support the feasibility of using COFs as heterogeneous photocatalysts for copper-mediated ATRP under visible light irradiation
Compound(7789-45-9)Synthetic Route of Br2Cu received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Cupric bromide), if you are interested, you can check out my other related articles.
Reference:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem