Downstream synthetic route of 147959-19-1

As the paragraph descriping shows that 147959-19-1 is playing an increasingly important role.

147959-19-1, (S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

With key building block 6 in hand, its nitroaldol (Henry) reaction with nitromethane was examined (Table 1). LiAlH418- TBAF19- as well as t-BuOK20-catalyzed Henry reactions led to nitro alcohols 12 and 13 with low diastereoselectivity, reflecting that the existing stereogenic center is too far away from the newly created one to exert appreciable asymmetric induction (Table 1, entries 1-3).21 An obvious way of resolving this problem was the introduction of additional chiral information, i.e. application of a chiral catalyst. In fact double stereodifferentiation using Shibasaki’s well established heterobimetallic (,S)-BINOL catalyst 1422 (5 mol%, THF, -40 C, 3 d) led to 12 with high diastereoselectivity albeit in low yield (Table 1, entry 4).Recently, other highly efficient chiral catalysts for asymmetric Henry reactions have been developed. Thus, Corey23 and Maruoka24 have utilized chiral quaternary ammonium fluorides as catalysts while Trost25 has presented a dinuclear zinc catalyst. Salen-cobalt(II) complexes have been used by Yamada whereas J¡ãrgensen and Evans have introduced bis(oxazoline)-coprhoer(II) complexes. The latter seemed to be the catalysts of choice, at least for aliphatic aldehydes, with respect to attainable yields and degree of stereoselectivity. EPO Table 1. Diastereoselective Henry Reaction of Aldehyde 6 with Nitromethaneyield ratio0 entry catalyst conditions(%)a 12:131 LiAlH4 THF, rt 53 56:442 TBAF THF, rt 33 43:573 r-BuOK t- 72 23:77BuOH/THF,00C4 14 THF, -40 C 45 98:25 {Cu[(+> EtOH, rt 87 92:815]} (OAc)26 (CuK-)- EtOH, rt 85 9:9115]}(OAc)27 {Cu[(+> EtOH, rt 94 97:316]}(OAc)28 (Cu[(-)- EtOH, rt 91 8:9216I)(OAc)2a isolated yield b determined by HPLC analysis of crude reaction mixtures EPO Indeed application of Evans’ bis(oxazoline) copper(II) acetate-based catalysts {Cu[(+)- 15]}(OAc)2 and in particular {Cu[(+)-16]}(OAc)2 (5 mol%, EtOH, rt, 5 d) gave the desired nitro alcohol 12 both with high diastereoselectivity and in high yield (Table 1 , entries 5 and 7). Finally, to obtain selectively diastereomer 13, aldehyde 6 was reacted with nitromethane in the presence of the enantiomeric catalysts {Cu[(-)-15]}(OAc)2 and {Cu[(-)-16]} (OAc)2 respectively. In these cases slightly lower stereoselectivities and yields were observed reflecting a mismatched pairing (Table 1, entries 6 and 8).

As the paragraph descriping shows that 147959-19-1 is playing an increasingly important role.

Reference£º
Patent; LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN; WO2006/94770; (2006); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Simple exploration of 497-25-6

#N/A

497-25-6, Oxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

4-Fluoro-2-(2-oxooxazolidin-3-yl)benzonitrile. A 48 mL pressure vessel containing 2-bromo-4-fluorobenzonitrile (1.00 g, 5.00 mmol), 2-oxazolidone (0.390 g, 4.50 mmol), K2CO3 (0.970 g, 7.0 mmol) and xantphos (0.231 g, 0.40 mmol) in dioxane (10 mL) was degassed with argon for 15 inn. Pd2 dba3 (0.140 g, 0.15 mmol) was introduced and then the reaction mixture was heated at 70 C. for 18 h. The mixture was cooled, diluted with dioxane, and then filtered through Celite. The resulting mixture was concentrated in vacuo and subjected to column chromatography on silica gel with hexanes:ethyl acetate (1:1) to (3:7) gradient as the eluent to afford the title compound as a white solid (0.460 g, 50% yield): 1H NMR (400 MHz, CDCl3) delta ppm: 7.73 (1H, dd, J=5.8, 8.6 Hz), 7.43 (1H, dd, J=2.5, 9.6 Hz), 7.11 (1H, ddd, J=2.5, 7.5, 8.7 Hz), 4.60 (2H, t, J=7.1 Hz), 4.29 (2H, t, J=7.1 HJz); LCMS (+EST, M+H+) m/z 207.

#N/A

Reference£º
Patent; Bristol-Myers Squibb Company; US2007/129379; (2007); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Analyzing the synthesis route of 184363-66-4

The synthetic route of 184363-66-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.184363-66-4,(S)-4-Phenyl-3-propionyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

(S) -4-benzyl-3-propionyloxazolidinone (16.5 g, 1.1 eq)Was dissolved in 40 ml of dichloromethane, cooled to 0 C,A solution of titanium tetrachloride (14 g, 1.1 eq) in dichloromethane was added dropwise,After the drop, keep stirring below 0 C for 10 min.Diisopropylethylamine (9.7 g, 1.1 eq) was added dropwise,After the drop, keep stirring below 0 C for 30 min. The compound (II-b) (30 g, 1 equiv)Dissolved in methylene chloride, added dropwise to the reaction system,After the dropwise addition, the mixture was stirred at 20 to 25 C for 10 hours.To the reaction system, an aqueous solution of saturated ammonium chloride was added,Extracted with dichloromethane, and the resulting organic phases were washed with water and water, respectivelyWashed with saturated brine and dried over anhydrous sodium sulfate.The solvent was removed by evaporation under reduced pressure to give the crude product. The crude product was purified by column chromatography,To give the title compound (IV-a) (33.9 g, yield 91%).HPLC detection, no enantiomeric detection, that is, chiral purity of 100%.

The synthetic route of 184363-66-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Zhejiang Yongning Pharmaceutical Co., Ltd.; Ye Tianjian; Lu Xiuwei; Yu Guangliang; Liu Ting; (14 pag.)CN105085322; (2017); B;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Brief introduction of 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 4. (5)-3-((5)-3-(4-Chlorophenyl)-3-(6-methoxypyridin-3-yl)propanoyl)-4- phenyloxazolidin-2-one (0330) (0331) To a precooled (0 C) solution of (5)-3-(4-chlorophenyl)-3-(6-methoxypyidin-3- yl)propanoic acid (3.30 g, 1 1.3 mmol) in THF (30.0 mL) was added pivolyl chloride (1.39 mL, 1 1.3 mmol), DMAP (cat) and triethylamine (3.15 mL, 22.6 mmol) drop-wise and stirred for 1 h. In another precooled (-78 C) suspension of (5)-4-phenyloxazolidin-2-one (2.03 g, 12.4 mmol) in THF (10.0 mL) was added w-BuLi (2.50 M solution in hexanes, 9.30 mL, 14.9 mmol) drop- wise and stirred at -20 C for 1 h. The solution of the above mixed anhydride was added slowly and stirred for additional 3 h. The reaction mixture was quenched with saturated solution of NH4CI (250 mL) and extracted with EtOAc (2 x 200 mL). The combined EtOAc extracts were washed with brine (200 mL), dried ( a2S04), filtered and concentrated under reduced pressure. The residue was purified on 40 g S1O2 column using using a gradient elution of 0-40% EtOAc in hexanes. Fractions containing the product were combined and concentrated under reduced pressure to provide the the title product. MS: m/z = 437 (M+H)+.

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MERCK SHARP & DOHME CORP.; MSD R&D (CHINA) CO., LTD.; WILLIAMS, Peter, D.; MCCAULEY, John, A.; BUNGARD, Christopher, J.; BENNETT, David Jonathan; WADDELL, Sherman, T.; MORRIELLO, Gregori, J.; CHANG, Lehua; DWYER, Michael, P.; HOLLOWAY, M. Katharine; CRESPO, Alejandro; CHU, Xin-Jie; WISCOUNT, Catherine; LOUGHRAN, H. Marie; MANIKOWSKI, Jesse, J.; SCHULZ, Jurgen; KEERTIKAR, Kartik, M.; HU, Bin; ZHONG, Bin; JI, Tao; WO2015/138220; (2015); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Brief introduction of 90719-32-7

The synthetic route of 90719-32-7 has been constantly updated, and we look forward to future research findings.

90719-32-7, (S)-4-Benzyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

4-Dimethylaminopyridine (2.55 g, 21.3 mmol) and triethylamine (46.9 ml, 340.8 mmol) in dichloromethane (100 ml) are added to a solution of (S)-(-)-4-benzyl-2-oxazolidinone (37.7 g, 213 mmol) in dichloromethane (300 ml). Next, isovaleroyl chloride (33.75 ml, 207 mmol) in dichloromethane (50 ml) is added to the previously prepared mixture and cooled to 0 C. keeping the internal temperature below 10 C. The reaction mixture is stirred for 30 minutes at 10 C., then the formed salts are filtered. Water (100 ml) is added and the phases are separated. The organic phase is washed with water (100 ml) and brine (100 ml), dried over sodium sulphate and evaporated to dryness obtaining 53 g of a yellow oil, which solidifies over time (yield 95%). 1H NMR (300 MHz, CDCl3, 298K) delta 7.35-7.15 (m, 5H), 4.71-4.61 (m, 1H), 4.21-4.10 (m, 2H), 3.35-3.25 (dd, J=13.2, J=3.4 Hz.1H), 2.85-2.72 (dd, J=14.97 Hz, 6.8 Hz, 1H), 2.80-2.67 (m, 2H), 2.29-2.12 (sept, J=13.2 Hz.1H), 1.03-0.98 (d, J=6.8 Hz.3H), 0.98-0.95 (d, J=6.8 Hz, 3H). 13C NMR (75 MHz, CDCl3, 298K) delta 175.6, 171.2, 154.4, 137.1, 130.5, 130.2, 126.0, 82.1, 66.1, 45.6, 42.6, 41.4, 34.0, 28.7, 27.3, 19.7.

The synthetic route of 90719-32-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Chemo Iberica, S.A.; Taddei, Maurizio; Russo, Adele; Cini, Elena; Riva, Renata; Rasparini, Marcello; Carcone, Luca; Banfi, Luca; Vitale, Romina; Roseblade, Stephen; Zanotti-Gerosa, Antonio Carlo; US2013/71899; (2013); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Analyzing the synthesis route of 108149-63-9

The synthetic route of 108149-63-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.108149-63-9,(R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate,as a common compound, the synthetic route is as follows.

General procedure: To a stirred solution of 6 (0.100 g, 0.433 mmol), appropriate substituted phenol (0.649 mmol) and PPh3 (0.182 g,0.693 mmol) in anhydrous toluene (5 mL) was added DIAD(0.14 mL, 0.693 mmol) at 80 C. After 3 h, EtOAc (40 mL)was added to the resulting solution. The organic layer was washed with 0.5 M aqueous NaOH (40 mL) and water (2 X40 mL), dried over Na2SO4, filtered and concentrated. The residue was purified by flash silica gel column chromatography eluting with Hexanes/EtOAc (9:1) or (95:5) to afford compounds 7a-s.

The synthetic route of 108149-63-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Andrade, Saulo F.; Campos, Edmar F.S.; Teixeira, Claudia S.; Bandeira, Cristiano C.; Lavorato, Stefania N.; Romeiro, Nelilma C.; Bertollo, Caryne M.; Oliveira, Monica C.; Souza-Fagundes, Elaine M.; Alves, Ricardo J.; Medicinal Chemistry; vol. 10; 6; (2014); p. 609 – 618;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Downstream synthetic route of 108149-63-9

As the paragraph descriping shows that 108149-63-9 is playing an increasingly important role.

108149-63-9, (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

4-Formyl-2,2-dimethyl-oxazolidine-3-carboxylic acid tert-butyl ester (35c). A solution of dimethylsulfoxide (8.10 g, 103.71 mmol) in dichloromethane (10 ml) was added dropwise during 25 min to a solution of oxalyl chloride (6.58 g, 51.9 mmol) in dichloromethane (80 ml) at -78 0C. At the end of the addition the reaction solution was warmed up to -60 0C, and a solution of the alcohol 12b (8.0 g, 34.6 mmol) in dichloromethane (60 ml) was added dropwise during 50 min. N,N-diisopropylethyl amine (36 ml, 200 mmol) in dichloromethane (5 ml) was then added to the reaction mixture -45 0C during 30 min whereafter the reaction mixture was allowed to warm to 0 0C during 10 min. The reaction mixture was then transferred to a separation funnel charged with ice-cold 1 M HCl solution (130 ml). The two phases were separated and the aqueous phase was extracted with dichloromethane. The combined organic extracts were dried and concentrated which gave the title compound (7.89 g, 99%). The residue was used in the next step without further purification.

As the paragraph descriping shows that 108149-63-9 is playing an increasingly important role.

Reference£º
Patent; MEDIVIR AB; WO2009/53277; (2009); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Brief introduction of 17016-83-0

The synthetic route of 17016-83-0 has been constantly updated, and we look forward to future research findings.

17016-83-0, (S)-4-Isopropyl-2-oxazolidinone is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step A A solution of (4S)-(-)-4-isopropyl-2-oxazolidinone (19.85 g, 0.154 mol) in 400 mL of THF at -78C under N2 is treated dropwise with n-butyl lithium (64.5 mL, 0.161 mol, 2.5 M solution in hexanes) resulting in the formation of solid. The mixture is stirred at -78C for 30 minutes, then treated with dropwise addition of iso-valeryl chloride (20.6 mL, 0.169 mol). The reaction is allowed to warm to room temperature slowly overnight. The sample is concentrated and then partitioned between EtOAc and saturated KH2PO4 solution. The organic extract is washed with brine, dried (MgSO4), and the resultant yellow oil is chromatographed (MPLC, silica gel, 10% EtOAc in hexanes) to give 29.8 g (91%) of (S)-4-isopropyl-3-(3-methyl-butyryl)-oxazolidin-2-one as a light yellow oil.

The synthetic route of 17016-83-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; WARNER-LAMBERT COMPANY LLC; EP1082127; (2005); B1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Simple exploration of 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Sodium hydride (2.2 g, 92.9 mmol) and tetrahydrofuran (100 ml) were added in a round bottom flask at room temperature under nitrogen atmosphere. Then this mixture was cooled to 10-20 C. To the cold mixture, 4-isopropyloxazolidin-2-one (77.4 mmol) added portion wise in 4-5 min interval. Reaction mixture was stirred at 10-20 C for 1h. Then chloroacetyl chloride (16.2 g, 143 mmol) was added slowly to the reaction mixture at 0-10 C. After complete addition, temperature raised to 20-30 C and stirred for 2h. Progress of the reaction monitored on thin layer chromatography. Then after completion of reaction water (30 ml) was added slowly to the reaction mixture and extracted reaction mixture twice with ethyl acetate (50ml). Organic layer was concentrated on the laboratory rotavapor under reduced pressure at 40-45 C to afford 6a. (12.4 g, Yield 85 %).

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various.

Reference£º
Article; Nehate, Sagar P.; Godbole, Himanshu M.; Singh, Girij P.; Mathew, Jessy E.; Shenoy, Gautham G.; Synthetic Communications; vol. 49; 9; (2019); p. 1173 – 1180;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

Brief introduction of 497-25-6

The synthetic route of 497-25-6 has been constantly updated, and we look forward to future research findings.

497-25-6, Oxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A 5 mL round bottom flask was successively charged with the two nucleophiles (1.0 mmol-10.0 mmol), the alkynylcopper reagent (0.5 mmol) and the solvent (1 mL). The resulting bright yellow slurry was then treated with the ligand (0.5 mmol if bidentate and 1.0 mmol if monodentate) and the reaction mixture was stirred at 25 C for 16h and at 375 rpm and under an atmosphere of oxygen (balloon). The reaction was then diluted with 15 mL of an aqueous mixture of saturated ammonium chloride and 25 % ammonium hydroxide (1:1 solution) and extracted with 3¡Á10 mL of ethyl acetate. Combined organic layers were washed with 10 mL of water and 10 mL of brine, dried over MgSO4 and concentrated to dryness. Nitrocyclohexane (65 muL, 0.5 mmol) and chromium(III) acetylacetonate (27 mg, 75mumol) were added to the crude and it was dissolved in 1 mL of CDCl3.

The synthetic route of 497-25-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Guissart, Celine; Luhmer, Michel; Evano, Gwilherm; Tetrahedron; vol. 74; 47; (2018); p. 6727 – 6736;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem