95715-86-9,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.95715-86-9,Methyl (R)-N-Boc-2,2-dimethyloxazolidine-4-carboxylate,as a common compound, the synthetic route is as follows.
A 3-necked, 1000 mL round-bottom flask fitted with a N2 inlet adapter, magnetic stir bar, drying tube, temperature guage, and a septa was charged with methyl (S)- (-)-3- (TERT-BUTOXYCARBONYL)-2, 2-DIMETHYL-4-OXAZOLIDINE-CARBOXYLATE (15. 42 g, 59.46 mmole) and 120 ML of anhydrous toluene. The solution was cooled TO-78 C in A dry ice/acetone bath. A solution of DIISOBUTYLALUMINUM hydride in toluene (69.5 ML, 104.1 mmole) was cooled TO-78 C in A separate dry ice/acetone bath and added to the ester solution under N2 pressure via a steel cannula over a period of 30 min. The rate of addition was adjusted to prevent the reaction mixture from warming above- 70 C. After addition was complete, the mixture was stirred at-78 C for an additional 30 minutes. Excess hydride was quenched by the dropwise addition of 20 mL of pre-chilled (-78 C) methanol, again keeping the reaction temperature below- 70 C. The resulting white slurry was poured into 500 mL of ice-cold 1 N HC1. The aqueous layer was extracted with ethyl acetate (3 x 300 mL). The combined organic layers were washed with 300 mL 1 N HC1, and brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to yield (S)-4- formyl-2,2-dimethyl-3-oxazolidinecarboxylic acid tert-butyl ester (14.65 g) as a yellow oil. The residue was dissolved in 200 mL of anhydrous methanol, and the flask was flushed with N2. N-Benzylglycine ethyl ester (23.0 g, 118. 9 mmole) and acetic acid (6. 8 mL, 118. 9 mmole) were added, and the reaction mixture was cooled in an ice bath. A solution of sodium cyanoborohydride in tetrahydrofuran (100 mL, 100 mmole) was added via a cannula under positive N2 pressure. The reaction mixture was stirred at room temperature for 18h. A large excess of solid K2C03 was added until gas evolution ceased. The slurry was concentrated almost to dryness under reduced pressure and the residue was dissolved in 300 mL of dichloromethane. The organic layer was washed with 300 mL of 1: 1: 1 water/saturated NAHC03/BRINE. The aqueous layer was extracted with ethyl acetate (2 x 200 mL). The combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, gradient: 15% ethyl acetate/hexane to 30% ethyl acetate/hexane) gave 16.83 g (70%) of (S)-4-[(BENZYLETHOXYCARBONYL-METHYLAMINO)- methyl] -2, 2-dimethyl-3-oxazolidinecarboxylic acid tert-butyl ester as a clear viscous oil. MS : 407. 3 (M+1).
As the paragraph descriping shows that 95715-86-9 is playing an increasingly important role.
Reference£º
Patent; WARNER-LAMBERT COMPANY LLC; WO2004/89915; (2004); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem