Electric Literature of C5H2Cl2N4. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 2,6-Dichloropurine, is researched, Molecular C5H2Cl2N4, CAS is 5451-40-1, about Fluorescence Polarization-Based Rapid Detection System for Salivary Biomarkers Using Modified DNA Aptamers Containing Base-Appended Bases. Author is Minagawa, Hirotaka; Shimizu, Akihisa; Kataoka, Yuka; Kuwahara, Masayasu; Kato, Shintaro; Horii, Katsunori; Shiratori, Ikuo; Waga, Iwao.
The field of care testing toward the anal. of blood and saliva lacks nowadays simple test techniques for biomarkers. In this study, the authors have developed a novel nucleobase analog, Ugu, which is a uracil derivative bearing a guanine base at the 5-position. Moreover, the authors attempted the development of aptamers that can bind to secretory IgA (SIgA), which has been examined as a stress marker in human saliva. It was observed that the acquired aptamer binds strongly and selectively to the SIgA dimer (Kd = 13.6 nM) without binding to the IgG and IgA monomers of human serum. Reduction of the aptamer length (41 mer) successfully improved 4-fold the binding affinity (Kd = 3.7 nM), compared to the original, longer aptamer (78 mer). Furthermore, the development of a simple detection system for human saliva samples by fluorescence polarization was investigated, using the reported human salivary α-amylase (sAA) and the SIgA-binding aptamer. Comparison of the present method with conventional ELISA techniques highlighted a significant Pearson’s correlation of 0.94 and 0.83 when targeting sAA and SIgA, resp. It is thus strongly suggested that a new simple test of stress markers in human saliva can be quantified quickly without bound/free (B/F) separation
The article 《Fluorescence Polarization-Based Rapid Detection System for Salivary Biomarkers Using Modified DNA Aptamers Containing Base-Appended Bases》 also mentions many details about this compound(5451-40-1)Electric Literature of C5H2Cl2N4, you can pay attention to it, because details determine success or failure
Reference:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem