Some tips on 2346-26-1

2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

To a rapidly stirred solution of lithium chloride (510 mg, 12.030 mmol, 3.00 equiv.) and oxazolidine-2,4-dione (380 mg, 3.760 mmol, 1.00 equiv.) in THF (8 mL) under N2 atmosphere at -78 C. was added t-BuLi (7.5 mL, 12.00 mmol, 3.00 equiv) dropwise. The reaction mixture was stirred at -78 C. for 20 minutes then warmed up to 0 C. for 5 minutes. The mixture was recooled to -78 C. and a solution of 2-(6-(8-fluoronaphthalen-2-yl)-2-methoxypyridin-3-yl)-3-methylbutanal (400 mg, 1.186 mmol, 0.30 equiv.) in THF (4 mL) was added. The reaction was stirred at -78 C. for 30 minutes. The reaction was monitored by TLC. Saturated aq. NH4Cl was added and the mixture was extracted with EtOAc, and the combined organic layer. The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (DCM/MeOH=20:1) to yield 5-(2-(6-(8-fluoronaphthalen-2-yl)-2-methoxypyridin-3-yl)-1-hydroxy-3-methylbutyl)oxazolidine-2,4-dione as a white solid. Mass spectrum (ESI, m/z): Calculated for C24H23FN2O5, 439.2 (M+H), found 439.1., 2346-26-1

2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; Janssen Pharmaceutica NV; Zhang, Xuqing; Macielag, Mark J.; (184 pag.)US2019/47960; (2019); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

To a rapidly stirred solution of lithium chloride (510 mg, 12.030 mmol, 3.00 equiv.) and oxazolidine-2,4-dione (380 mg, 3.760 mmol, 1.00 equiv.) in THF (8 mL) under N2 atmosphere at -78 C. was added t-BuLi (7.5 mL, 12.00 mmol, 3.00 equiv) dropwise. The reaction mixture was stirred at -78 C. for 20 minutes then warmed up to 0 C. for 5 minutes. The mixture was recooled to -78 C. and a solution of 2-(6-(8-fluoronaphthalen-2-yl)-2-methoxypyridin-3-yl)-3-methylbutanal (400 mg, 1.186 mmol, 0.30 equiv.) in THF (4 mL) was added. The reaction was stirred at -78 C. for 30 minutes. The reaction was monitored by TLC. Saturated aq. NH4Cl was added and the mixture was extracted with EtOAc, and the combined organic layer. The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (DCM/MeOH=20:1) to yield 5-(2-(6-(8-fluoronaphthalen-2-yl)-2-methoxypyridin-3-yl)-1-hydroxy-3-methylbutyl)oxazolidine-2,4-dione as a white solid. Mass spectrum (ESI, m/z): Calculated for C24H23FN2O5, 439.2 (M+H), found 439.1., 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Janssen Pharmaceutica NV; Zhang, Xuqing; Macielag, Mark J.; (181 pag.)US2019/47961; (2019); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,2346-26-1

solution of 0.5 g (1.96 mmol) of 3-chloro-4-(chloromethyl)-4′-fluoro-1,1′-biphenyl, prepared in step 5.3., 0.240 g (2.35 mmol) of 1,3-oxazolidine-2,4-dione and 0.45 g (3.92 mmol) of 1,1,3,3-tetramethylguanidine in 10 ml of tetrahydrofuran is refluxed for 18 hours. The mixture is allowed to return to ambient temperature and is concentrated under reduced pressure. The residue is taken up in dichloromethane and water and the aqueous phase is separated and extracted twice with dichloromethane. The combined organic phases are washed with saturated aqueous sodium chloride solution and dried over sodium sulphate. Following evaporation of the solvent the residue obtained is purified by chromatography on silica gel, eluting with a 20/80 mixture of ethyl acetate and cyclohexane. This gives 0.33 g of pure product in the form of a white solid. m.p. ( C.): 108-110 C.

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

Reference£º
Patent; Sanofi-Aventis; US2006/14830; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

2.2. 1,1-dimethylethyl 4-[(2,4-dioxo-1,3-oxazolidin-3-yl)methyl]piperidine-1-carboxylate A suspension of 13.60 g (46.36 mmol) of 1,1-dimethylethyl 4-{[(methylsulphonyl)oxy]methyl}piperidine-1-carboxylate, prepared in step 2.1., 9.37 g (92.72 mmol) of 1,3-oxazolidine-2,4-dione and 16.02 g (139.08 mmol) of 1,1,3,3-tetramethylguanidine in a mixture of 180 ml of tetrahydrofuran and 30 ml of dimethylformamide is heated at reflux for 24 hours. It is allowed to return to ambient temperature and is concentrated under reduced pressure. The residue is taken up in dichloromethane and water and the aqueous phase is separated off and extracted twice with dichloromethane. The combined organic phases are washed with saturated aqueous sodium chloride solution and dried over sodium sulphate. Following evaporation of the solvent, the residue obtained is purified by chromatography on silica gel, eluding with a 98/2 then 95/5 mixture of dichloromethane and methanol. This gives 12.53 g of product in the form of an orange-brown solid., 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

Reference£º
Patent; SANOFI-AVENTIS; US2007/21403; (2007); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 2346-26-1

2346-26-1, 2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of oxazolidine-2,4-dione (cas: 2346-26-1, 0.1 g, 0.99 O^N^^BOC mmol) in DMF (5 mL) was added /er/-butyl (2-bromoethyl) carbamate ^ (cas: 39684-80-5, 0.265 g, 1.2 equiv.) and K2CO3 (0.274 g, 2.0 equiv.). The reaction mixture was heated to 70 C for 2 hours. The reaction mixture was then cooled to ambient temperature, and quenched with water (20 mL). The aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with water, brine, dried (Na2S04), and concentrated under reduced pressure to afford a residue, which was purified by preparative TLC (Petroleum: EtOAc =1 : 1) to provide carbamate 1-280 as a pale yellow oil (0.1 g, 41 % yield). MS (ESI, pos. ion) m/z: 267(M+Na).

2346-26-1, 2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; CARMOT THERAPEUTICS, INC.; ENQUIST, Johan; KRISHNAN, Shyam; ATWAL, Suman; ERLANSON, Daniel; FUCINI, Raymond V.; HANSEN, Stig; SAWAYAMA, Andrew; SETHOFER, Steven; (719 pag.)WO2019/183577; (2019); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step b) (E)-5-{3-[3-(5-methyl-2-phenyl-oxazol-4-ylmethyl]-phenyl]-but-2-enyl}-oxazolidine-2,4-dione Tert-butyl lithium (17.5 mL, 29.7 mmol) was added dropwise in to a rapidly stirred cold (-78 C.) solution of lithium chloride (3.6 g, 84.84 mmol) and oxazolidine-2,4-dione (1.43 g, 14.14 mmol) in THF (90 mL). The mixture was stirred at -78 C. for 30 minutes, then gradually warmed to 0 C. After recooling to -78 C., (E)-4-[3-(3-chloro-1-methyl-propenyl)-phenoxymethyl]-5-methyl-2-phenyl-oxazole (5.0 g, 14.14 mmol) in THF (5 mL) was added all at once. After stirring for 10 minutes at -78 C., the mixture was gradually warmed to room temperature, and allowed to stir for 5 hours. Then, the reaction mixture was quenched with aqueous NH4 Cl, poured into water, acidified with HCl, and extracted with EtOAc. The organic extracts were dried over MgSO4. Evaporation and purification by flash chromatography on silica gel (hexane/EtOAc 3/1), gave a white solid (3.5 g, 59% yield, m.p. 138-139 C.). Analysis for: C24 H22 N2 O5 Calc’d: C, 68.89; H, 5.30; N, 6.69 Found: C, 68.49; H, 5.29; N, 6.71, 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

Reference£º
Patent; American Home Products Corporation; US5468762; (1995); A;; ; Patent; American Home Products Corporation; US5532256; (1996); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 2346-26-1

2346-26-1, As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

A solution of 1.0 g (4.02 mmol) of 2-(4-[(4-chlorophenyl)oxy]phenyl)ethanol, prepared in accordance with Example 14.1., and 1.1 ml (7.89 mmol) of triethylamine in 12 ml of dichloromethane, cooled by an ice bath, is admixed with a solution of 0.60 g (5.24 mmol) of methanesulphonyl chloride in 2 ml of dichloromethane. The combined solutions are subsequently stirred at ambient temperature for 2 hours. They are diluted with 25 ml of water and 75 ml of dichloromethane. After the phases have settled and been separated, the organic phase is washed with 25 ml of water then 25 ml of saturated aqueous sodium chloride solution, dried over sodium sulphate and evaporated to dryness, to give 1.32 g of product in the form of an oil. The product is redissolved in 12 ml of tetrahydrofuran. 0.50 g (5 mmol) of 1,3-oxazolidine-2,4-dione and a solution of 0.92 g (8.0 mmol) of 1,1,3,3-tetramethylguanidine in solution in 4 ml of tetrahydrofuran are added. The mixture is subsequently heated at reflux overnight. It is cooled with an ice bath and 25 ml of an aqueous 0.1N solution of hydrochloric acid and 100 ml of ethyl acetate are added. After the phases have settled, the organic phase is separated off and washed with two times 25 ml of water then with 25 ml of saturated aqueous sodium chloride solution, dried over sodium sulphate and evaporated to dryness. The residue is purified by chromatography on silica gel, eluting with an 85/15 then 75/25 and 65/35 mixture of cyclohexane and ethyl acetate, to give 1.20 g of product in the form of a white solid. Melting point ( C.): 105-107

2346-26-1, As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

Reference£º
Patent; Sanofi-Aventis; US2006/14830; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 2346-26-1

2346-26-1, As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

0.4 ml of a 40% solution of diethyl azodicarboxylate (0.9 mmol) in toluene is added to a solution, cooled with an ice bath, of 0.111 g (0.44 mmol) of 3-[6-(4-chlorophenyl)pyrimidin-4-yl]propan-1-ol, prepared in stage 5.4., of 0.077 g (0.76 mmol) of 1,3-oxazolidine-2,4-dione and of 0.235 g (0.89 mmol) of triphenylphosphine in 4 ml of tetrahydrofuran. The mixture is subsequently stirred at ambient temperature overnight. It is taken up in a mixture of ethyl acetate and of water. The organic phase is washed with a saturated aqueous sodium chloride solution, dried over sodium sulphate and evaporated. The residue is purified by chromatography on silica gel, elution being carried out with a 97/3 mixture of dichloromethane and of methanol, to produce 0.117 g (0.35 mmol) of product in the solid form.

2346-26-1, As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

Reference£º
Patent; SANOFI-AVENTIS; US2007/21426; (2007); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 2346-26-1

2346-26-1, The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

Example 11 A mixture of (E)-4-[2-[5-methyl-2-(2-naphthyl)-4-oxazolyl]vinyl]cinnamaldehyde (2.00 g), 2,4-oxazolidinedione (1.11 g), piperidine (0.23 g), ethanol (100 ml) and tetrahydrofuran (50 ml) was refluxed under heating conditions for 8 hours. After the reaction mixture was concentrated, chloroform was added to the residue; the mixture was then washed with 2N HCl and water. The organic layer was washed with water, dried (MgSO4) and then concentrated. The residue was subjected to silica gel column chromatography. The crystal obtained from the fraction eluted with ethyl acetate-chloroform (1:9, v/v) was dissolved in tetrahydrofuran (100 ml), and subjected to catalytic hydrogenation at 1 atm and room temperature in the presence of palladium-carbon (5%, 0.5 g). After the catalyst was filtered off, the filtrate was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography to yield 5-[3-[4-[2-[5-methyl-2-(2-naphthyl)-4-oxazolyl]ethyl]phenyl]propyl]-2,4-oxazolidinedione (0.29 g, 12%) from the fraction eluted with methanol-chloroform (2:98, v/v), which was then recrystallized from dichloromethane-isopropyl ether to yield a colorless prisms having a melting point of 168-169 C.

2346-26-1, The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Takeda Chemical Industries, Ltd.; US5614544; (1997); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 2346-26-1

2346-26-1, 2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

WORKING EXAMPLE 23 In substantially the same manner as in Working Example 11, 4-methoxy-3-(5-methyl-2-phenyl-4-oxazolyl-methoxy)cinnamaldehyde was condensed with 2,4-oxazolidinedione. The condensate was subjected to catalytic reduction to yield 5-[3-[4-methoxy-3-(5-methyl-2-phenyl-4-oxazolylmethoxy)phenyl]propyl]-2,4-oxazolidinedione, which was recrystallized from chloroform-methanol to give colorless prisms, m.p.185-187 C.

2346-26-1, 2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; Takeda Chemical Industries, Ltd.; US5932601; (1999); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem