2346-26-1, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 2346-26-1, name is Oxazolidine-2,4-dione. A new synthetic method of this compound is introduced below.
A solution of 1.4 g (7.36 mmol) of 2-[4-(trifluoromethyl)phenyl]ethanol, 2.22 g (8.47 mmol) of triphenylphosphine and 0.82 g (8.1 mmol) of 1,3-oxazolidine-2,4-dione (J. Med. Chem. 1991, 34, 1542-1543) in 25 ml of tetrahydrofuran, cooled to approximately -10 C., is admixed dropwise under an inert atmosphere with a solution of 1.7 g (8.47 mmol) of diisopropyl azidocarboxylate (DIAD) in 5 ml of tetrahydrofuran, while maintaining the temperature of the reaction mixture between -10 C. and 0 C. Stirring is continued at 0 C. for 1 hour and then at 25 C. for 20 hours. The filtrate is concentrated under reduced pressure and the residue is taken up in dichloromethane and aqueous 5% sodium hydroxide solution (10 ml). The aqueous phase is separated and then extracted twice with dichloromethane. The organic phases are combined and washed in succession with aqueous hydrochloric acid solution (1N) and then saturated aqueous sodium hydrogencarbonate solution and saturated aqueous sodium chloride solution. The organic phase is dried over sodium sulphate and the filtrate is concentrated under reduced pressure. The residue thus obtained is purified by chromatography on silica gel, eluting with a 20/80 mixture of ethyl acetate and cyclohexane. This gives 1.5 g of oxazolidinedione in the form of an oil, 2346-26-1
Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.
Reference£º
Patent; Sanofi-Aventis; US2006/14830; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem