Bellamy, Estelle et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2010 | CAS: 163165-91-1

2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. Oxazolidines that are the precursor to bisoxazolidines are in effect mono-oxazolidines. They are also used as moisture scavengers in polyurethane and other systems. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries.COA of Formula: C11H13NO2

Ortho-directed functionalization of arenes using magnesate bases was written by Bellamy, Estelle; Bayh, Omar; Hoarau, Christophe; Trecourt, Francois; Queguiner, Guy; Marsais, Francis. And the article was included in Chemical Communications (Cambridge, United Kingdom) on October 7,2010.COA of Formula: C11H13NO2 The following contents are mentioned in the article:

Ortho-directed functionalization of arenes using lithium alkylmagnesate bases were achieved, demonstrating the potential use of arylmagnesates as suitable arylanions, without a further transmetalation step, for challenging functionalizations such as fluorination, hydroxylation, arylation, vinylation and alkylation through epoxide ring-opening. This study involved multiple reactions and reactants, such as 2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1COA of Formula: C11H13NO2).

2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. Oxazolidines that are the precursor to bisoxazolidines are in effect mono-oxazolidines. They are also used as moisture scavengers in polyurethane and other systems. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries.COA of Formula: C11H13NO2

163165-91-1;2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol;The future of 163165-91-1;New trend of C11H13NO2;function of 163165-91-1

 

Schachner, Joerg A. et al. published their research in Inorganic Chemistry in 2014 | CAS: 163165-91-1

2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. A common way to produce multisubstituted oxazolidines is by means of cycloaddition reactions. Oxazolidines are cyclic condensation products of β-amino alcohols and aldehydes or ketone, and they undergo a facile and complete hydrolysis in aqueous solution. Alterations in carbonyl moiety control the rate of formation of a given β-amino alcohol. Oxazolidines are weaker bases (pKa 6–7) than parent β-amino alcohols and found to be more lipophilic than the parent compound at physiological pH.Reference of 163165-91-1

Oxorhenium(V) Complexes with Phenolate-Oxazoline Ligands: Influence of the Isomeric Form on the O-Atom-Transfer Reactivity was written by Schachner, Joerg A.; Terfassa, Belina; Peschel, Lydia M.; Zwettler, Niklas; Belaj, Ferdinand; Cias, Pawel; Gescheidt, Georg; Moesch-Zanetti, Nadia C.. And the article was included in Inorganic Chemistry on December 15,2014.Reference of 163165-91-1 The following contents are mentioned in the article:

The bidentate phenolate-oxazoline ligands 2-(2′-hydroxyphenyl)-2-oxazoline (1a, Hoz) and 2-(4′,4′-dimethyl-3′,4′-dihydrooxazol-2′-yl)phenol (1b, Hdmoz) were used to synthesize two sets of oxorhenium(V) complexes, namely, [ReOCl2(L)(PPh3)] [L = oz (2a) and dmoz (2b)] and [ReOX(L)2] [X = Cl, L = oz (3a or 3a’); X = Cl, L = dmoz (3b); X = OMe, L = dmoz (4)]. Complex 3a’ is a coordination isomer (N,N-cis isomer) with respect to the orientation of the phenolate-oxazoline ligands of the previously published complex 3a (N,N-trans isomer). The reaction of 3a’ with silver triflate in acetonitrile led to the cationic compound [ReO(oz)2(NCCH3)](OTf) ([3a’](OTf)). Compound 4 is a rarely observed isomer with a trans-O=Re-OMe unit. Complexes 3a, 3a’, [3a’](OTf), and 4 were tested as catalysts in the reduction of a perchlorate salt with an organic sulfide as the O acceptor and are active, in contrast to 2a and 2b. A comparison of the two isomeric complexes 3a and 3a’ showed significant differences in activity: 87% 3a vs. 16% 3a’ sulfoxide yield. When complex [3a’](OTf) was used, the yield was 57%. D. functional theory calculations circumstantiate all of the proposed intermediates with N,N-trans configurations to be lower in energy compared to the resp. compounds with N,N-cis configurations. Also, no interconversions between N,N-trans and N,N-cis configurations are predicted, which is in accordance with exptl. data. This is interesting because it contradicts previous mechanistic views. Kinetic analyses determined by UV-visible spectroscopy on the rate-determining oxidation steps of 3a, 3a’, and [3a’](OTf) proved the N,N-cis complexes 3a’ and [3a’](OTf) to be slower by a factor of ∼4. This study involved multiple reactions and reactants, such as 2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1Reference of 163165-91-1).

2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. A common way to produce multisubstituted oxazolidines is by means of cycloaddition reactions. Oxazolidines are cyclic condensation products of β-amino alcohols and aldehydes or ketone, and they undergo a facile and complete hydrolysis in aqueous solution. Alterations in carbonyl moiety control the rate of formation of a given β-amino alcohol. Oxazolidines are weaker bases (pKa 6–7) than parent β-amino alcohols and found to be more lipophilic than the parent compound at physiological pH.Reference of 163165-91-1

163165-91-1;2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol;The future of 163165-91-1;New trend of C11H13NO2;function of 163165-91-1

 

Goebel, Dominik et al. published their research in Journal of Organic Chemistry in 2021 | CAS: 163165-91-1

2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries.Recommanded Product: 163165-91-1

Substitution Effect on 2-(Oxazolinyl)-phenols and 1,2,5-Chalcogenadiazole-Annulated Derivatives: Emission Color-Tunable, Minimalistic Excited-State Intramolecular Proton Transfer (ESIPT)-based Luminophores was written by Goebel, Dominik; Rusch, Pascal; Duvinage, Daniel; Stauch, Tim; Bigall, Nadja-C.; Nachtsheim, Boris J.. And the article was included in Journal of Organic Chemistry on November 5,2021.Recommanded Product: 163165-91-1 The following contents are mentioned in the article:

Minimalistic 2-(oxazolinyl)-phenols substituted with different electron-donating and -withdrawing groups as well as 1,2,5-chalcogenadiazole-annulated derivatives thereof were synthesized and investigated toward their emission behavior in solution as well as in the solid state. Depending on the nature of the incorporated substituent and its position, emission efficiencies were increased or diminished, resulting in AIE- or ACQ-characteristics. Single crystal anal. revealed J- and H-type packing motifs and a so far undescribed isolation of ESIPT-based fluorophores in the keto form. This study involved multiple reactions and reactants, such as 2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1Recommanded Product: 163165-91-1).

2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries.Recommanded Product: 163165-91-1

163165-91-1;2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol;The future of 163165-91-1;New trend of C11H13NO2;function of 163165-91-1

 

Cozzi, Pier Giorgio et al. published their research in Organometallics in 1995 | CAS: 163165-91-1

2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Oxazolidines are cyclic condensation products of β-amino alcohols and aldehydes or ketone, and they undergo a facile and complete hydrolysis in aqueous solution. Alterations in carbonyl moiety control the rate of formation of a given β-amino alcohol.Product Details of 163165-91-1

(Hydroxyphenyl)oxazoline: a Novel and Remarkably Facile Entry into the Area of Chiral Cationic Alkylzirconium Complexes Which Serve as Polymerization Catalysts was written by Cozzi, Pier Giorgio; Gallo, Emma; Floriani, Carlo; Chiesi-Villa, Angiola; Rizzoli, Corrado. And the article was included in Organometallics on November 30,1995.Product Details of 163165-91-1 The following contents are mentioned in the article:

I (L; R = R1 = Me, R2 = H; R = R2 = H, R1 = Ph; R = H, R1 = Me, R2 = Ph), readily accessible on a large scale from com. available amino alcs., were reacted with M(CH2Ph)4 (M = Zr, Hf) to prepare [L2M(CH2Ph)2] (II). The x-ray crystal structure of [L2Zr(CH2Ph)2] (R = R1 = Me, R2 = H) was determined and showed a cis arrangement for the benzyl ligands. Protonolysis of 3 of II with HNR3BPh4 gave cationic [ML2(CH2Ph)(THF)]BPh4; 2 of these were also prepared via an oxidative pathway utilizing Cp2FeBPh4. The x-ray crystal structure of [HfL2(CH2Ph)(THF)]BPh4 (R = R1 = Me, R2 = H) was obtained and showed a THF mol. cis to the benzyl ligand. A preliminary study of ethylene polymerization with [ZrL2(CH2Ph)(THF)]BPh4 (R = R1 = Me, R2 = H) in toluene showed an interesting, although low, activity. This study involved multiple reactions and reactants, such as 2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1Product Details of 163165-91-1).

2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol (cas: 163165-91-1) belongs to oxazolidine derivatives. Oxazolidines are well known as key portions of bioactive molecules or precursors of chiral molecules, as well as established chiral auxiliaries. Oxazolidines are cyclic condensation products of β-amino alcohols and aldehydes or ketone, and they undergo a facile and complete hydrolysis in aqueous solution. Alterations in carbonyl moiety control the rate of formation of a given β-amino alcohol.Product Details of 163165-91-1

163165-91-1;2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenol;The future of 163165-91-1;New trend of C11H13NO2;function of 163165-91-1