Related Products of 497-25-6, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps.In a article, 497-25-6, molcular formula is C3H5NO2, introducing its new discovery.
Oxidative degradation experiments on 2-ethanolamine (MEA) were performed at four different oxygen concentrations and at two temperatures. MEA loss and degradation product build-up were measured. Increasing the temperature from 55 to 75C was shown to have higher impact on the MEA loss than increasing the oxygen concentration from 21 to 98%. Liquid end sample analyses were performed for all experiments and overall nitrogen balance tests were conducted for the experiments at 21% O2 (run 2), 50% O2 and 98% O2. Analysis of liquid and gas phase ammonia and MEA in the solvent was found to give a good overall picture of degradation in the MEA system. The degradation products formed at the different oxygen concentrations were the same as described in earlier literature. However, it was found that oxygen affects the formation of the individual degradation products differently. At 75C the development of degradation product concentrations with time was more complex. Laboratory reaction experiments were used to verify the formation of certain degradation products from some of the suggested mechanisms.
The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 497-25-6 is helpful to your research. Related Products of 497-25-6
Reference:
Oxazolidine – Wikipedia,
Oxazolidine | C3H1092NO – PubChem