With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80-65-9,3-Aminooxazolidin-2-one,as a common compound, the synthetic route is as follows.,80-65-9
Example 8; Preparation of Compound 35; N-(4-chloro-2-propionylphenyl)-trifluoromethanesulfonamide (2.50 g, 7.9 mmol) and 3-amino-2-oxazolidinone (1.225 g, 11.85 mmol) were mixed in toluene (30 mL). The reaction was heated, with a Dean-Stark apparatus to remove water, at reflux for 3 hrs. The reaction mixture was cooled and evaporated to dryness. The residue was purified on a silica column using 20-100% CH2Cl2/PE, followed by 2% MeOH/DCM as solvent. The product was then recrystallized from DCM/PE to give 2.20 g of white solid. M.p. 115-117 C. 1H n.m.r. (CDCl3) delta 11.82, 1H, b; 7.69, 1H, d, J8.9 Hz; 7.60, 1H, d, J2.2 Hz; 7.42, 1H, dd, J18.9 Hz, J22.3 Hz; 4.54, 2H, t, J7.4 Hz; 3.96, 2H, t, J7.4 Hz; 2.93, 2H, q, J7.6 Hz; 1.13, 3H, t, J7.6 Hz.
The synthetic route of 80-65-9 has been constantly updated, and we look forward to future research findings.
Reference£º
Patent; Winzenberg, Kevin Norman; Meyer, Adam Gerhard; Yang, Qi; Riches, Andrew Geoffrey; US2007/238700; (2007); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem