Analyzing the synthesis route of 2346-26-1

2346-26-1, The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

Example 7 A mixture of 6-(5-methyl-2-phenyl-4-oxazolylmethoxy)-2-benzofurancarbaldehyde (1.70 g), 2,4-oxazolidinedione (1.55 g), pyrrolidine (0.365 g) and ethanol (40 ml) was heated under refluxing conditions for 3 hours. The reaction mixture was poured over water; the resulting crystals were collected by filtration. The crystals were dissolved in tetrahydrofuran (100 ml); after palladium-carbon (0.40 g) was added, the mixture was subjected to catalytic reduction at room temperature under an atmospheric pressure of 1 atm. After the catalyst was filtered off, the filtrate was concentrated under reduced pressure; the residue was subjected to silica gel column chromatography. From the fraction eluted with methanolchloroform (2:98, v/v), crystals of 5-[6-(5-methyl-2-phenyl-4-oxazolylmethoxy)-2-benzofuranylmethyl]-2,4-oxazolidinedione (0.14 g, 6.6%) were obtained, which was then recrystallized from dichloromethane-methanol to yield colorless prisms having a melting point of 172 to 173 C. Elemental analysis for C23 H18 N2 O6: Calculated: C, 66.03; H, 4.34; N, 6.70 Found: C, 65.95; H, 4.31, N, 6.71

2346-26-1, The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Takeda Chemical Industries, Ltd.; US5723479; (1998); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem