Ames, Jennifer M. published the artcileEffect of pH, Temperature, and Moisture on the Formation of Volatile Compounds in Glycine/Glucose Model Systems, Category: oxazolidine, the publication is Journal of Agricultural and Food Chemistry (2001), 49(9), 4315-4323, database is CAplus and MEDLINE.
Mixtures of glycine, glucose, and starch were extrusion cooked using sodium hydroxide at 0, 3, and 6 g/L of extruder water feed, 18% moisture, and 120, 150, and 180 °C target die temperatures, giving extrudates with pH values of 5.6, 6.8, and 7.4. Freeze-dried equimolar solutions of glucose and glycine were heated either dry or after equilibration to â?3% moisture at 180°C in a reaction-tube system designed to mimic the heating profile in an extruder. Volatile compounds were isolated onto Tenax and analyzed by gas chromatog.-mass spectrometry. For the extrudates, total yields of volatiles increased with decreasing pH at 180°C, reached a maximum at pH 6.8 at 150°C, and increased with increasing pH at 120°C. Amounts increased with temperature at all pH values. Pyrazines were the most abundant class for all sets of conditions (54-79% of total volatiles). Pyrroles, ketones, furans, oxazoles, and pyridines were also identified. Yields of volatiles from the reaction-tube samples increased by >60% in the moist system. Levels of individual classes also increased in the presence of moisture, except pyrazines, which decreased â?.5-fold. Twenty-one of the compounds were common to the reaction-tube samples and the extrudates.
Journal of Agricultural and Food Chemistry published new progress about 20662-83-3. 20662-83-3 belongs to oxazolidine, auxiliary class Oxazole, name is 4,5-Dimethyloxazole, and the molecular formula is C5H7NO, Category: oxazolidine.
Referemce:
https://en.wikipedia.org/wiki/Oxazolidine,
Oxazolidine | C3H7NO – PubChem