Synthetic Route of 497-25-6, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 497-25-6, Name is Oxazolidin-2-one, molecular formula is C3H5NO2. In a Article,once mentioned of 497-25-6
The reaction of propargylic amines and CO2 can provide high-value-added chemical products. However, most of catalysts in such reactions employ noble metals to obtain high yield, and it is important to seek eco-friendly noble-metal-free MOFs catalysts. Here, a giant and lantern-like [Zn116] nanocage in zinc-tetrazole 3D framework [Zn22(Trz)8(OH)12(H2O)9?8 H2O]n Trz=(C4N12O)4? (1) was obtained and structurally characterized. It consists of six [Zn14O21] clusters and eight [Zn4O4] clusters. To our knowledge, this is the highest-nuclearity nanocages constructed by Zn-clusters as building blocks to date. Importantly, catalytic investigations reveal that 1 can efficiently catalyze the cycloaddition of propargylic amines with CO2, exclusively affording various 2-oxazolidinones under mild conditions. It is the first eco-friendly noble-metal-free MOFs catalyst for the cyclization of propargylic amines with CO2. DFT calculations uncover that ZnII ions can efficiently activate both C?C bonds of propargylic amines and CO2 by coordination interaction. NMR and FTIR spectroscopy further prove that Zn-clusters play an important role in activating C?C bonds of propargylic amines. Furthermore, the electronic properties of related reactants, intermediates and products can help to understand the basic reaction mechanism and crucial role of catalyst 1.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 497-25-6. In my other articles, you can also check out more blogs about 497-25-6
Reference:
Oxazolidine – Wikipedia,
Oxazolidine | C3H393NO – PubChem