Archives for Chemistry Experiments of 102029-44-7

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 102029-44-7

Related Products of 102029-44-7, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.102029-44-7, Name is (R)-4-Benzyl-2-oxazolidinone, molecular formula is C10H11NO2. In a article£¬once mentioned of 102029-44-7

Total synthesis of (-)-ulapualide A, a novel tris-oxazole macrolide from marine nudibranchs, based on some biosynthesis speculation

A new, second generation, total synthesis of ulapualide A (1), whose stereochemistry was recently determined from X-ray analysis of its complex with the protein actin, is described. The synthesis is designed and based on some speculation of the biosynthetic origin of the contiguous tris-oxazole unit in ulapualide A, alongside that of the related co-metabolites that contain only two oxazole rings, e.g.6 and 7. The mono-oxazole carboxylic acid 67b and the mono-oxazole secondary alcohol 55b which, together, contain all of the 10 asymmetric centres in the natural metabolite, were first elaborated using a combination of contemporary asymmetric synthesis protocols. Esterification of 67b with 55b under Yamaguchi conditions gave the ester 77 which was then converted into the omega-amino acid 18a following simultaneous deprotection of the t-butyl ester and the N-Boc protecting groups. Macrolactamisation of 18a, using HATU, now gave the key intermediate macrolactam 17, containing two of the three oxazole rings in ulapualide A (1). A number of procedures were used to introduce the third oxazole ring in ulapualide A from 17, including: a) cyclodehydration to the oxazoline 78a followed by oxidation using nickel peroxide leading to 76; b) dehydration to the enamide 79, followed by conversion into the methoxyoxazoline 78b, via80, and elimination of methanol from 78b using camphorsulfonic acid. The tris-oxazole macrolide 76 was next converted into the aldehyde 82b in four straightforward steps, which was then reacted with N-methylformamide, leading to the E-alkenylformamide 83. Removal of the TBDPS protection at C3 in 83 finally gave (-)-ulapualide A, whose 1H and 13C NMR spectroscopic data were indistinguishable from those obtained for naturally derived material. It is likely that the tris-oxazole unit in ulapualide A (1) is derived in nature from a cascade of cyclodehydrations from an acylated tris-serine precursor, e.g.9, followed by oxidation of the resulting tris-oxazoline intermediate, i.e.10. It is also plausible to speculate that the biosynthesis of metabolites related to ulapualide A, e.g. the bis-oxazole 6 and the imide 7, involve cyclisations of just two of the serine units in 9. These speculations were given some credence by carrying out pertinent interconversions involving the bis-oxazole amide 24, the enamide 25, the imide 26, the oxazoline 27 and the tris-oxazole 30 as model compounds. An alternative strategy to the tris-oxazole macrolide intermediate 76 was also examined, involving preliminary synthesis of the aldehyde 73, containing a shortened (C25-C34) side chain from 67b and 47b. A Wadsworth-Emmons olefination reaction between 73 and the phosphonate ester 74 led smoothly to the E-alkene 75, but we were not able to reduce selectively the conjugated enone group in 75 to 76 without simultaneous reduction of the oxazole alkene bond, using a variety of reagents and reaction conditions. The Royal Society of Chemistry.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 102029-44-7

Reference£º
Oxazolidine – Wikipedia,
Oxazolidine | C3H1972NO – PubChem