Some tips on 90319-52-1

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 90319-52-1, if you are interested, you can browse my other articles.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.(R)-4-Phenyloxazolidin-2-one, cas is 90319-52-1, below Introduce a new synthetic route., 90319-52-1

To a stirred solution of 4 (2 kg, 8 mol) in CH2Cl2 (2 L) was added oxalyl chloride (1.4 L, 16 mol) dropwise at 0 ¡ãC. The resulting solution was stirred at room temperature for another 4 h and concentrated in vacuo. To a stirred solution of (R)-4-phenyloxazolidin-2-one (1.3 kg, 8 mol) and TEA (1.7 L, 12 mol) in CH2Cl2 (4.8 L) at 0 ¡ãC was added the substituted cinnamic chloride in CH2Cl2 (800 mL) dropwise. The mixture was stirred at 0 ¡ãC for 1 h and then raised to room temperature for 3 h when a saturated solution of NH4Cl (600 mL) was added. The aqueous layer was separated, and the organic solution was washed with water (600 mL .x. 3), brine (800 mL), and dried over Na2SO4. The organic solution was evaporated and 2.9 kg of 5 was obtained after recrystallization in EtOH in 93percent yield, mp 143-145 ¡ãC, (c 1.0, CHCl3). 1H NMR (300 MHz, CDCl3): delta 7.86 (d, J = 15.5 Hz, 1H), 7.75 (d, J = 15.3 Hz, 1H), 7.30-7.50 (m, 11H), 7.23 (m, 2H), 7.03 (dd, J = 2.3, 8.6 Hz, 1H), 5.64 (dd, J = 4.0, 9.0 Hz, 1H), 5.15 (s, 2H), 4.85 (t, J = 8.9 Hz, 1H), 4.36 (dd, J = 3.9, 8.8 Hz, 1H). 13C NMR (100 MHz, CDCl3): delta 164.6, 158.9, 153.7, 146.5, 138.9, 136.5, 135.8, 129.8, 129.2, 129.1, 128.6, 128.5, 128.4, 128.1, 127.6, 127.5, 126.0, 125.9, 121.5, 117.4, 117.1, 114.4, 70.0, 69.9, 57.8. HRMS (ESI): Calcd for C25H21NO4Na: 422.1368. Found: 422.1349., 90319-52-1

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 90319-52-1, if you are interested, you can browse my other articles.

Reference£º
Article; Zhang, Qiang; Li, Jian-Feng; Tian, Guang-Hui; Zhang, Rong-Xia; Sun, Jin; Suo, Jin; Feng, Xin; Fang, Du; Jiang, Xiang-Rui; Shen, Jing-Shan; Tetrahedron Asymmetry; vol. 23; 8; (2012); p. 577 – 582;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 2346-26-1

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 2346-26-1, if you are interested, you can browse my other articles.

We know that the rate of many reactions can be accelerated by catalysts. A catalyst speeds up the rate of a reaction by lowering the activation energy; in addition, the catalyst is regenerated in the process. 2346-26-1, name is Oxazolidine-2,4-dione,below Introduce a new synthetic route., 2346-26-1

1.10 g (4.67 mmol) of (4-isoquinolin-4-ylphenyl)methanol, obtained in step 10.1., are dissolved in 10 ml of chloroform and 1.4 ml (19 mmol) of thionyl chloride are added dropwise. The mixture is stirred at ambient temperature overnight and the filtrate is concentrated to dryness under reduced pressure. The residue is coevaporated with two times 10 ml of dichloroethane. The residue is taken up in 15 ml of tetrahydrofuran. 0.56 g (5.54 mmol) of 1,3-oxazolidine-2,4-dione are added, followed dropwise by a solution of 1.60 g (13.9 mmol) of 1,1,3,3-tetramethylguanidine in 5 ml of tetrahydrofuran. The mixture is heated at reflux overnight. It is cooled to ambient temperature. 20 ml of iced water and 100 ml of ethyl acetate are added. After they have settled, the phases are separated. The organic phase is washed with three times 10 ml of water and 20 ml of saturated aqueous sodium chloride solution. It is dried over sodium sulphate and the filtrate is concentrated under reduced pressure. The residue is purified by chromatography on silica gel, eluting with a 50/50 then 40/60 mixture of cyclohexane and ethyl acetate. This gives 0.84 g of product in the form of a solid yellow foam. m.p. ( C.): 65 C.

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 2346-26-1, if you are interested, you can browse my other articles.

Reference£º
Patent; Sanofi-Aventis; US2006/14830; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

99395-88-7. An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.(S)-4-Phenyloxazolidin-2-one, cas is 99395-88-7. Here is a downstream synthesis route of the compound 99395-88-7

Example 21 (S,E)-3-(pent-2-enoyl)-4-phenyl oxazolidin-2-one The 4S-phenyl-2-oxazolidinone (5.6g, 34.4mmol) was placed in a three-necked flask, after it was purged with nitrogen, tetrahydrofuran was added and it was cooled to -78C, then n-butyl lithium (1.6M, 22ml, 35.4mmol) was added dropwise, and the reaction was carried out for 30 minutes. After that, a solution of 2-pentenoyl chloride (4.2g, 35.5mmol) in tetrahydrofuran was added dropwise, and the reaction was continued for 30 minutes, then it was slowly raised to 0C, the reaction was continued for 2 hours and quenched with saturated ammonium chloride solution. The reaction solution was then concentrated to remove tetrahydrofuran and extracted with ethyl acetate 3 times, then the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated, and recrystallized with petroleum ether and ethyl acetate to give a white solid 8g, yield: 95%. 1HNMR(300MHz, CDCl3): delta 7.3-7.4(5H, m), 7.1-7.2(1H, m), 6.9-7.1(1H, m), 5.5(1H, dd, J=4.2,19.0), 4.8(1H, t, J=9.6, 18.7), 4.2(1H, dd, J=3.7,18.9), 2.2(2H, m), 1.0(3H, t, J=7.4,14.9). ESI-MS: 246.4(M+H)., 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Reference£º
Patent; Shanghai Institute Materia Medica, Chinese Academy Of Sciences; Topharman Shanghai Co., Ltd.; ZHANG, Qiang; ZHANG, Rongxia; TIAN, Guanghui; LI, Jianfeng; ZHU, Fuqiang; JIANG, Xiangrui; SHEN, Jingshan; EP2671878; (2013); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 2346-26-1

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 2346-26-1 if you are interested.

2346-26-1, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 2346-26-1, name is Oxazolidine-2,4-dione. A new synthetic method of this compound is introduced below.

A mixture of (2E)-3- [5- (4-fluorophenyl)-l-methyl-lH- PYRAZOL-4-YL]-N- [4- (HYDROXYMETHYL) phenyl] acrylamide (8.4 g), thionyl chloride (2.59 mL) and tetrahydrofuran (70 mL) was heated under reflux for 3 hrs. The reaction mixture was poured into saturated aqueous sodium hydrogen carbonate, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with water and then saturated brine, dried (MGSO4) and concentrated to give a solid (6.22 g). To a mixture of 1, 3-oxazolidine-2,4-dione (123.3 mg) and N, N- dimethylformamide (5 mL) was added sodium hydride (60% in oil, 48.8 mg) and the mixture was stirred at room temperature for 30 min. The obtained solid (300 mg) was added to the reaction mixture and the mixture was further stirred overnight at room temperature. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with 0. 1N hydrochloric acid, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated. The residue was recrystallized from ethyl acetate-hexane to give (2E)-N-14- [ (2, 4-DIOXO-1, 3-oxazolidin-3- yl) METHYL] PHENYL}-3- [5- (4-FLUOROPHENYL)-1-METHYL-LH-PYRAZOL-4- yl] acrylamide as yellow prism crystals (132 mg, yield 37%). melting point: 239-240C.

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 2346-26-1 if you are interested.

Reference£º
Patent; TAKEDA CHEMICAL INDUSTRIES, LTD.; WO2004/39365; (2004); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 2346-26-1

2346-26-1, This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 2346-26-1. We look forward to the emergence of more reaction modes in the future. 2346-26-1

One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 2346-26-1, introduce a new downstream synthesis route., 2346-26-1

C. 3-Triphenylmethyl-2,4-oxazolidinedione To a solution of 600 mg of 2,4-oxazolidinedione and 601 mg of triethylamine in 7.0 ml of chloroform was added 1.66 g of triphenyl chloromethane and the reaction mixture stirred at room temperature for 30 minutes. The resulting mixture was dissolved in 250 ml of ethyl acetate and washed with water (3*50 ml) and brine (2*20 ml) and dried over sodium sulfate. Removal of the solvent gave 1.8 g of the desired product.

2346-26-1, This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 2346-26-1. We look forward to the emergence of more reaction modes in the future. 2346-26-1

Reference£º
Patent; Pfizer Inc.; US5498621; (1996); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

99395-88-7, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.(S)-4-Phenyloxazolidin-2-one, cas is 99395-88-7, below Introduce a new synthetic route.

[0728] To a solution of 2-(1-(tert-butoxycarbonyl)-3-vinylazetidin-3-yl)acetic acid (40-3, 1.9 g, 8.12 mmol) in anhydrous THF (30 mL) and cooled to -15 oC was added triethylamine (1.2 mL, 8.93 mmol), followed by dropwise addition of pivaloyl chloride (1.04 mL, 8.52 mmol). The heterogeneous mixture was stirred for 20 min at 0 oC, then re-cooled to -78 oC and stirred for 15 min (solution 1). In a separate flask, (S)-(+)-4-phenyl-2-oxazolidinone (1.32 g, 8.12 mmol) was dissolved in anhydrous THF (30 mL) and cooled to -78 oC. A solution of n-butyl lithium (2.5 M in hexane, 3.2 mL, 8.12 mmol) was added dropwise followed by dropwise addition (15 min) of the mixed anhydride solution (solution 1). The resulting mixture was further stirred for 10 min at -78 oC at which time it was warmed to 0 oC and stirred for 40 min. The reaction mixture was quenched with 10% citric acid (13 mL) and extracted with ethyl acetate (120 mL x 2). The combined organic layers were washed with brine (50 mL x 3), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The crude residue was purified by CombiFlash column chromatography on silica gel (0- 40% EtOAc in hexane) to afford (S)-4-phenyl-3-(2-(1- (tert-butoxycarbonyl)-3-vinylazetidine-3-yl)acetyl)oxazolidin-2-one (40-4, 2.7 g, 87% yield) as white solid.1H NMR (250 MHz, CDCl3) delta ppm 1.41 (s, 9 H), 3.45 (s, 2 H), 3.77 (t, J = 10.71 Hz, 1 H), 3.82 – 3.93 (m, 2 H), 4.29 (dd, J = 8.90, 3.74 Hz, 1 H), 4.70 (t, J = 8.84 Hz, 1 H), 4.95 – 5.12 (m, 2 H), 5.40 (dd, J = 8.62, 3.57 Hz, 1 H), 6.03 (dd, J = 17.41, 10.71 Hz, 1 H), 7.24 – 7.44 (m, 5 H). MS: [M+H]+ = 386.6.

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Reference£º
Patent; ACHAOGEN, INC.; COHEN, Frederick; KONRADI, Andrei W.; CHOI, Taylor Ann Joo; MACHAJEWSKI, Timothy D.; KANE, Timothy Robert; HILDEBRANDT, Darin James; (351 pag.)WO2017/223349; (2017); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 2346-26-1

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 2346-26-1 if you are interested.

2346-26-1, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 2346-26-1, name is Oxazolidine-2,4-dione. A new synthetic method of this compound is introduced below.

WORKING EXAMPLE 15 In substantially the same manner as in Working Example 11, (E,E)-5-[3-methoxy-4-(5-methyl-2-phenyl-4-oxazolylmethoxy)phenyl]-2,4-pentadien-1-al was condensed with 2,4-oxazolidinedione. The condensate was subjected to catalytic hydrogenation to yield 5-[5-[3-methoxy-4-(5-methyl-2-phenyl-4-oxazolylmethoxy)phenyl]pentyl]-2,4-oxazolidinedione. The product was recrystallized from dichloromethane-ether to give colorless prisms, m.p.114-115 C., 2346-26-1

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 2346-26-1 if you are interested.

Reference£º
Patent; Takeda Chemical Industries, Ltd.; US5932601; (1999); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.(S)-4-Phenyloxazolidin-2-one, cas is 99395-88-7, below Introduce a new synthetic route., 99395-88-7

(4S)-3-{[(4-Methoxybenzyl)thio]acetyl}-4-phenyl-l,3-oxazolidin-2-one[(4-Methoxybenzyl)thio]acetic acid (1.3 g, 6.1 mmol) was dissolved in dry CH2Cl2 (40 ml) and given O0C. N,N’-Dicyclohexylcarbodiimide (DCC, 6.1 g, 6.1 mmol) and 4- EPO (dimethylamino)pyridine (DMAP, 1.6 g, 12.9 mmol) were added and the mixture was stirred for 30 minutes. (S)-(+)-4-Phenyl-2-oxazolidinone (1,0 g, 6.1 mol) was added and the mixture was stirred at room temperature for 24 hours. The mixture was filtrated, concentrated under reduced pressure and purified by flash-chromatography (Hex : EtOAc 8:2 then 1:1). This 5 afforded the title compound as a white solid.1H-NMR (CDCl3, 200 MHz): delta 3.46-3.59 (m, 3H), 3.74-3.76 (m, 4H), 4.23-4.28 (m, IH), 4.68 (t, J = 8.8 Hz, IH), 5.38-5-42 (m, IH), 6.78 (d, /= 8.6 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 7.32-7.40 (m, 5H)

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Reference£º
Patent; ASTRAZENECA AB; WO2006/137796; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 2346-26-1

Thank you very much for taking the time to read this article. If you are also interested in other aspects of 2346-26-1, you can also browse my other articles.

A heterogeneous catalyst is a catalyst that is present in a different phase than the reactants. Such catalysts generally function by furnishing an active surface upon which a reaction can occur. 2346-26-1, name is Oxazolidine-2,4-dione, introduce a new downstream synthesis route as follows., 2346-26-1

D. 4-[4-(2,4-Dioxo-oxazolidin-5-ylidenemethyl)-2-methoxy-phenoxy]-naphthalene-1 – carboxylic acid amide. A mixture of 4-(4-Formyl-2-methoxy-phenoxy)- naphthalene-1 -carboxylic acid amide (117 mg, 0.36 mmol), thiazolidine-2,4- dione (47.5 mg, 0.36 mmol), sodium acetate (164 mg, 2.0 mmol) and ethanol (3 mL) was heated at reflux overnight. To the mixture was added acetic acid, followed by addition of 3 drops of water, to form a clear solution. This solution was loaded onto a preparative HPLC [Waters XTerra Prep MS C8 OBD Column (5 mum, 30 x 50 mm)] and eluted with a gradient mixture of 0.1 % aqueous TFA and acetonitrile. After triturating with methanol and drying, the pure product was obtained. 1H NMR (400 Hz, DMSO-c/6) ?12.64 (s, 1 H), 8.41 (d, 1 H), 8.21 (d, 1 H), 7.93 (s, 1 H), 7.83 (s, 1 H), 7.65-7.57 (m, 2H), 7.55 (d, 1 H), 7.50 (s, 1 H), 7.48 (s, 1 H), 7.21 (d, 1 H), 7.16 (d, 1 H), 6.68 (d, 1 H), 3.81 (s, 3H); LC/MS (m/z) [M+1]+ 421.0 (calculated for C22Hi7N2O5S, 421.1 ).;

Thank you very much for taking the time to read this article. If you are also interested in other aspects of 2346-26-1, you can also browse my other articles.

Reference£º
Patent; JANSSEN PHARMACEUTICA N.V.; WO2008/109727; (2008); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.(S)-4-Phenyloxazolidin-2-one, cas is 99395-88-7, below Introduce a new synthetic route., 99395-88-7

4.1.23 (4S,2E)-3-(4′-Methylpent-2′-enoyl)-4-phenyloxazolidin-2-one 4243,44 Butyllithium (1.60 M in hexanes, 8.24 mL, 20.6 mmol) was added slowly via syringe to a stirring solution of (4S)-4-phenyl-2-oxazolidinone 41 (3.37 g, 20.6 mmol) in THF (30 mL) under an atmosphere of nitrogen at -78 C. The resulting solution was stirred for 20 min at -78 C. A solution of (E)-4-methylpent-2-enoylchloride 40 (3.01 g, 22.8 mmol) in THF (17 mL) was added slowly by syringe. The temperature was maintained at -78 C for 30 min at which stage it was raised to 0 C and the reaction mixture stirred at this temperature for 1.5 h. The reaction mixture was then quenched by the addition of saturated aqueous ammonium chloride (30 mL) and the volatiles were removed under reduced pressure. Ethyl acetate (65 mL) was added, the organic phase separated and washed with saturated aqueous sodium bicarbonate (2*30 mL), brine (30 mL), dried and the solvent removed under reduced pressure to give the crude oxazolidinone 42. Purification by flash chromatography on silica gel eluting with ethyl acetate/hexane (20:80) gave the pure oxazolidinone 42 (4.71 g, 88%) as a white solid: mp 100-102 C (lit., 43 103-104 C); [alpha]D20 +105.8 (c 1.0, CHCl3) {lit., 43 [alpha]D20 +103.1 (c 1.0, CHCl3)}; numax/cm-1 (KBr) 2966, 1778, 1685, 1639; deltaH (300 MHz, CDCl3) 1.06, 1.07 [6H, 2* d, 2* J 6.9, CH(CH3)2], 2.42-2.63 [1H, sym m, CH(CH3)2], 4.27 [1H, dd, A of ABX, J 8.7, 3.9, one of C(5)H2], 4.69 [1H, dd appears as t, B of ABX, J 8.7, one of C(5)H2], 5.49 [1H, dd, X of ABX, J 8.7, 3.9, C(4)H], 7.05 [1H, dd, J 15.3, 6.6, C(3′)H], 7.16-7.46 {6H, m, containing 7.22 [1H, dd, J 15.3, 1.2, C(2′)H], ArH}; deltaC (75.5 MHz, CDCl3) 21.1, 21.2 [2* CH3, CH(CH3)2], 31.4 [CH, CH(CH3)2], 57.7 [CH, C(4)H], 69.9 [CH2, C(5)H2], 117.6 [CH, C(2′)H], 125.9, 128.6, 129.1 (3* CH, aromatic CH), 139.1 (C, quaternary aromatic C), 153.7 (C, C=O), 158.1 [CH, C(3′)H], 164.9 (C, C=O)., 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Reference£º
Article; Foley, David A.; O’Leary, Patrick; Buckley, N. Rachael; Lawrence, Simon E.; Maguire, Anita R.; Tetrahedron; vol. 69; 6; (2013); p. 1778 – 1794;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem