Analyzing the synthesis route of 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

A solution of 3 g (11.90 mmol) of 1-(4-bromobutyl)-1H-indole, prepared in stage 2.1., of 2.41 g (23.80 mmol) of 1,3-oxazolidin-2,4-dione (J. Med. Chem., 1991, 34, 1538-1544) and of 2.74 g (23.80 mmol) of 1,1,3,3-tetramethylguanidine in 30 ml of tetrahydrofuran is brought to reflux for 14 hours under an inert atmosphere. The mixture is concentrated under reduced pressure. The residue is taken up in ethyl acetate and water, the aqueous phase is separated and extracted twice with ethyl acetate, and the combined organic phases are washed with a saturated aqueous sodium chloride solution and dried over sodium sulphate. After evaporation of the solvent, the residue obtained is purified by chromatography on silica gel, elution being carried out with a 10/90 and then 20/80 mixture of ethyl acetate and of cyclohexane. 2 g of product are obtained in the form of a white solid., 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; SANOFI-AVENTIS; US2007/21426; (2007); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 95530-58-8

As the paragraph descriping shows that 95530-58-8 is playing an increasingly important role.

95530-58-8,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.95530-58-8,(R)-4-Isopropyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

caproyl chloride is reacted with the Evans valine-derived oxazolidinone, (R)-4-isopropyloxazolidin-2-one, and n-butylLi (Step a). The resulting adduct (2) is reacted by aldol condensation with a chiral aldehyde derived from (S)-(-)-lactic acid (3) in the presence of dibutyl-BOTf and triethylamine (Step b). The 4-hydroxyl group of the resulting adduct (4) is protected as a t-butyldimethylsilyl ether (using TBS chloride and DIEA), followed by peroxide-mediated hydrolysis (using hydrogen peroxide and lithium hydroxide) of the chiral auxiliary to yield the differentially protected dihydroxy pentanoic acid (5) (Steps c and d). Differential protection of the two secondary alcohols allows for the incorporation of various carboxylic acids at the 3 position of the lactone. The carboxylic acid is coupled to N-FMOC-L-threonine benzyl ester with BOP-chloride and DMAP (Step e). Removal of the two benzyl protecting groups with H2 and Pd/O will yield the dilactone seco-acid (6) (Step f). Lactonization occurs using a BOP-Cl mediated ester-forming reaction with DMAP (Step g). Diethylamine is used to remove the FMOC protecting group to yield the dilactone (7) (Step h). N-formyl-3-amine salicylic acid is coupled to the dilactone using standard carbodiimide chemistry (Step i). In particular, the dilactone is combined with N-formyl-3-aminosalicylic acid using EDCl and HOBT, followed by treatment with TBAF. The final elaboration of the derivatized antimycin A3 structure is accomplished by fluoride-mediated removal of the silyl protecting group and coupling of the desired acid chloride (e.g., isobutyryl chloride and DIEA) (Steps j and k).

As the paragraph descriping shows that 95530-58-8 is playing an increasingly important role.

Reference£º
Patent; Fred Hutchinson Cancer Research Center; US2005/239873; (2005); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

WORKING EXAMPLE 15 In substantially the same manner as in Working Example 11, (E,E)-5-[3-methoxy-4-(5-methyl-2-phenyl-4-oxazolylmethoxy)phenyl]-2,4-pentadien-1-al was condensed with 2,4-oxazolidinedione. The condensate was subjected to catalytic hydrogenation to yield 5-[5-[3-methoxy-4-(5-methyl-2-phenyl-4-oxazolylmethoxy)phenyl]pentyl]-2,4-oxazolidinedione. The product was recrystallized from dichloromethane-ether to give colorless prisms, m.p.114-115 C., 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

Reference£º
Patent; Takeda Chemical Industries, Ltd.; US5932601; (1999); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 80-65-9

As the paragraph descriping shows that 80-65-9 is playing an increasingly important role.

80-65-9, 3-Aminooxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

80-65-9, (b) 0.5 g (2.0 mmol) of Compound II was dissolved in 10 ml of methanol, 0.24 g (2.4 mmol) of Furazolidone metabolites AOZ, at 60 ~ 70 reaction 2h, the reaction was completed, cooled to room temperature, filtered to give 0.32g furazolidone metabolite haptens. The structural formula III of the hapten and the synthetic route thereof are shown in FIG. 1.

As the paragraph descriping shows that 80-65-9 is playing an increasingly important role.

Reference£º
Patent; Guangzhou Runkun Biological Technology Co., Ltd.; Hu Rui; Li Bin; (14 pag.)CN106866568; (2017); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 452339-73-0

452339-73-0, 452339-73-0 (R)-5-(2,2-Dimethyl-4H-benzo[d][1,3]dioxin-6-yl)oxazolidin-2-one 10933894, aoxazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.452339-73-0,(R)-5-(2,2-Dimethyl-4H-benzo[d][1,3]dioxin-6-yl)oxazolidin-2-one,as a common compound, the synthetic route is as follows.

(5R)-5-(2,2-Dimethyl-4H-1,3-benzodioxin-6-yl)-1,3-oxazolidin-2-one (10g) in DMF (100ml) was added dropwise to a stirred suspension of sodium hydride (60% oil dispersion, 2.33g) in DMF (50ml) with stirring under nitrogen and maintaining the internal temperature at 0. Stirring was continued at 0-5 for 1 h. The mixture was recooled to 0 and a solution of 6-bromohexyl but-3-ynyl ether (14.7g) in DMF (50moi) was added over 1 min. The mixture was then stirred at 20-30 for 2 h. 2M HCl (9ml) was added and the mixture was partitioned between water and diethyl ether. The aqueous layer was extracted with more diethyl ether and the combined organic layers were washed twice with brine. After drying (MgSO4) the solution was concentrated and loaded onto a column of silica gel (600g) set up in diethyl ether: petroleum ether (bp 40-60) (1 : 2). The column was eluted successively with this mixture, then (1 : 1) and the diethyl ether to give the title compound (13.88g). LCMS RT=3.45min.

452339-73-0, 452339-73-0 (R)-5-(2,2-Dimethyl-4H-benzo[d][1,3]dioxin-6-yl)oxazolidin-2-one 10933894, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2003/72539; (2003); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 95715-86-9

As the paragraph descriping shows that 95715-86-9 is playing an increasingly important role.

95715-86-9,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.95715-86-9,Methyl (R)-N-Boc-2,2-dimethyloxazolidine-4-carboxylate,as a common compound, the synthetic route is as follows.

A 3-necked, 1000 mL round-bottom flask fitted with a N2 inlet adapter, magnetic stir bar, drying tube, temperature guage, and a septa was charged with methyl (S)- (-)-3- (TERT-BUTOXYCARBONYL)-2, 2-DIMETHYL-4-OXAZOLIDINE-CARBOXYLATE (15. 42 g, 59.46 mmole) and 120 ML of anhydrous toluene. The solution was cooled TO-78 C in A dry ice/acetone bath. A solution of DIISOBUTYLALUMINUM hydride in toluene (69.5 ML, 104.1 mmole) was cooled TO-78 C in A separate dry ice/acetone bath and added to the ester solution under N2 pressure via a steel cannula over a period of 30 min. The rate of addition was adjusted to prevent the reaction mixture from warming above- 70 C. After addition was complete, the mixture was stirred at-78 C for an additional 30 minutes. Excess hydride was quenched by the dropwise addition of 20 mL of pre-chilled (-78 C) methanol, again keeping the reaction temperature below- 70 C. The resulting white slurry was poured into 500 mL of ice-cold 1 N HC1. The aqueous layer was extracted with ethyl acetate (3 x 300 mL). The combined organic layers were washed with 300 mL 1 N HC1, and brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to yield (S)-4- formyl-2,2-dimethyl-3-oxazolidinecarboxylic acid tert-butyl ester (14.65 g) as a yellow oil. The residue was dissolved in 200 mL of anhydrous methanol, and the flask was flushed with N2. N-Benzylglycine ethyl ester (23.0 g, 118. 9 mmole) and acetic acid (6. 8 mL, 118. 9 mmole) were added, and the reaction mixture was cooled in an ice bath. A solution of sodium cyanoborohydride in tetrahydrofuran (100 mL, 100 mmole) was added via a cannula under positive N2 pressure. The reaction mixture was stirred at room temperature for 18h. A large excess of solid K2C03 was added until gas evolution ceased. The slurry was concentrated almost to dryness under reduced pressure and the residue was dissolved in 300 mL of dichloromethane. The organic layer was washed with 300 mL of 1: 1: 1 water/saturated NAHC03/BRINE. The aqueous layer was extracted with ethyl acetate (2 x 200 mL). The combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, gradient: 15% ethyl acetate/hexane to 30% ethyl acetate/hexane) gave 16.83 g (70%) of (S)-4-[(BENZYLETHOXYCARBONYL-METHYLAMINO)- methyl] -2, 2-dimethyl-3-oxazolidinecarboxylic acid tert-butyl ester as a clear viscous oil. MS : 407. 3 (M+1).

As the paragraph descriping shows that 95715-86-9 is playing an increasingly important role.

Reference£º
Patent; WARNER-LAMBERT COMPANY LLC; WO2004/89915; (2004); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 95530-58-8

95530-58-8 (R)-4-Isopropyloxazolidin-2-one 641505, aoxazolidine compound, is more and more widely used in various fields.

95530-58-8, (R)-4-Isopropyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

95530-58-8, To a flame-dried 100 mL round-bottom flask was added 3,4,5-trimethoxyphenylacetic acid (2.10 g, 9.29 mmol). THF (25 mL) was added followed by Et3N (1.42 mL, 10.22 mmol). The solution was cooled to -78 C. Pivaloyl chloride (1.26 mL, 10.22 mmol) was added dropwise and the solution warmed to 0 C. and stirred for 1 h. In a separate flame-dried 50 mL round-bottom flask was added (R)-4-isopropyloxazolidin-2-one (1.0 g). THF (20 mL) was added and the solution cooled to -78 C. n-BuLi (6.83 mL, 9.29 mmol, 1.36 M) was added dropwise and the solution stirred at -78 C. for 15 min and then warmed to 25 C. where it was stirred for 15 min. The organolithium solution was transferred to the solution of the mixed anhydride via cannula at -78 C. The reaction was stirred at -78 C. for 15 min, warmed to 0 C., and stirred for 1 h. Water (10 mL) was added and the aqueous layer extracted with EtOAc (2*10 mL). The combined organics were washed with brine (10 mL), dried over anhydrous MgSO4, and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO2, 30 g) using 25% EtOAc in hexanes as the eluent to afford trimethoxyphenyl)acetyl)oxazolidin-2-one as a colorless oil (2.30 g, 88%): Rf=0.28 (1:1, Hex:EtOAc); 1H NMR (CDCl3) delta 6.55 (s, 2H), 4.44-4.41 (m, 1H), 4.29-4.24 (m, 2H), 4.19 (dd, J) 9.0, 3.0 Hz, 1H), 4.12-4.07 (m, 1H), 3.82 (s, 6H), 3.80 (s, 3H), 2.36-2.30 (m, 1H), 0.87 (d, J) 6.8 Hz, 3H), 0.78 (d, J) 7.1 Hz, 3H); 13C NMR (CDCl3) delta 171.2, 154.1, 153.2, 129.4, 106.7, 63.4, 60.9, 58.6, 56.2, 41.6, 28.4, 18.0, 14.7, 14.3; HRFAB[M+Li]344.1686 (calculated C17H23NO6Li: 344.1686).

95530-58-8 (R)-4-Isopropyloxazolidin-2-one 641505, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; University of Connecticut; US2009/105287; (2009); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 875444-08-9

The synthetic route of 875444-08-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.875444-08-9,(4S,5R)-5-(3,5-Bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one,as a common compound, the synthetic route is as follows.,875444-08-9

Triaryl oxazolidinone methyl ester; To a IOOL flask was added oxazolidinone 30 (1.35kg) and dry DMF (30.8L). The synthesis of oxazolidinone 30 is provided later. After cooling to -15 to -20 0C, NaHMDS (1.96L of 2M solution) was added, and the mixture was aged 15-30 min. The triaryltosylate 29 (2.2 kg) in DMF was added to the resulting sodium salt of oxazolidinone 30, and the mixture was allowed to warm to 0 to 5 0C. After the triaryl tosylate was consumed, 2.44 L of 5M HCl was added, followed by 22L of 20% heptane/ethyl acetate. Finally, water (11 L) was added slowly. The layers were separated and then the organic layer was washed with DMF:water twice and then with water twice. The organic layer was assayed for yield and then filtered through a plug of silica gel to remove excess oxazolidinone 30. The solution was then solvent switched to methanol and used in the final step.

The synthetic route of 875444-08-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MERCK & CO., INC.; WO2008/82567; (2008); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5.2. 3-{[1-(1-Isoquinolyl)-4-piperidyl]methyl}-1,3-oxazolidine-2,4-dione A solution of 2.01 g (9.95 mmol) of diisopropyl azodicarboxylate (DIAD) in 5 ml of tetrahydrofuran is added dropwise, under an inert atmosphere, to a solution of 2.4 g (9.95 mmol) of [1-(1-isoquinolyl)-4-piperidyl]methanol, prepared in step 5.1, 2.87 g (10.94 mmol) of triphenylphosphine and 1.21 g (11.93 mmol) of 1,3-oxazolidine-2,4-dione in 40 ml of tetrahydrofuran, cooled to about -10 C., the temperature of the reaction medium being maintained throughout between -10 C. and 0 C. Stirring is then continued at 0 C. for 1 hour and then at 25 C. for 18 hours. The mixture is concentrated under reduced pressure and the residue is taken up in dichloromethane and 10 ml of aqueous 5% sodium hydroxide solution. The aqueous phase is separated out and then extracted twice with dichloromethane. The organic phases are combined and washed successively with aqueous hydrochloric acid solution (1N) and then with saturated aqueous sodium hydrogen carbonate solution and with saturated aqueous sodium chloride solution. The organic phase is dried over sodium sulfate and the filtrate is concentrated under reduced pressure. The residue thus obtained is purified by chromatography on silica gel, eluding with a 99/1/0.1 and then 98/2/0.2 mixture of dichloromethane, methanol and 28% aqueous ammonia. 3.57 g of oxazolidinedione are thus obtained in the form of an orange paste., 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Sanofi-Aventis; US2006/89344; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 2346-26-1

2346-26-1, 2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

A mixture of 0.660 g (1.71 mmol) of trans-3-[5-(4-chloronaphthalen-1-yl)-1,3-dioxan-2-yl]propyl methanesulfonate, obtained in step 5.2, 0.208 g (2.05 mmol) of 1,3-oxazolidine-2,4-dione (J. Med. Chem., 1991, 34, 1542-1543) and 0.396 g (3.43 mmol) of 1,1,3,3-tetramethylguanidine in 10 ml of tetrahydrofuran is refluxed overnight under an inert atmosphere. The residue is taken up in 100 ml of ethyl acetate and 25 ml of water. Separation is carried out after settling out. The organic phase is washed with 25 ml of water and then 25 ml of a saturated aqueous sodium chloride solution. The aqueous phases are re-extracted with 50 ml of ethyl acetate. The organic phases are pooled, dried over sodium sulfate and concentrated under reduced pressure. The residue is purified by chromatography on silica gel, eluding with a 70/30 and then 60/40 mixture of cyclohexane and ethyl acetate, to obtain 0.483 g of product in the form of a white solid. Melting point:. 125-127 C.

2346-26-1, 2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; Sanofi Aventis; US2005/182130; (2005); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem