Simple exploration of 108149-63-9

108149-63-9 (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate 11053464, aoxazolidine compound, is more and more widely used in various.

108149-63-9, (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a stirred solution of 6 (0.100 g, 0.433 mmol), appropriate substituted phenol (0.649 mmol) and PPh3 (0.182 g,0.693 mmol) in anhydrous toluene (5 mL) was added DIAD(0.14 mL, 0.693 mmol) at 80 C. After 3 h, EtOAc (40 mL)was added to the resulting solution. The organic layer was washed with 0.5 M aqueous NaOH (40 mL) and water (2 X40 mL), dried over Na2SO4, filtered and concentrated. The residue was purified by flash silica gel column chromatography eluting with Hexanes/EtOAc (9:1) or (95:5) to afford compounds 7a-s.

108149-63-9 (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate 11053464, aoxazolidine compound, is more and more widely used in various.

Reference£º
Article; Andrade, Saulo F.; Campos, Edmar F.S.; Teixeira, Claudia S.; Bandeira, Cristiano C.; Lavorato, Stefania N.; Romeiro, Nelilma C.; Bertollo, Caryne M.; Oliveira, Monica C.; Souza-Fagundes, Elaine M.; Alves, Ricardo J.; Medicinal Chemistry; vol. 10; 6; (2014); p. 609 – 618;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 2346-26-1

2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of 1.0 g (4 mmol) of [4-(4-phenyl-1H-imidazol-1-yl)phenyl]methanol, prepared in step 12.1., 0.485 g (4.80 mmol) of 1,3-oxazolidine-2,4-dione and 1.15 g (4.38 mmol) of triphenylphosphine in 16 ml of tetrahydrofuran, cooled by a bath of acetone and ice, is admixed dropwise with 0.80 g (4 mmol) of diisopropyl azodicarboxylate in solution in 2 ml of tetrahydrofuran. The mixture is subsequently warmed to ambient temperature again and stirred overnight. 9 ml of the solution are taken, to which are added 12 ml of a 7N ammonia solution (84 mmol) in methanol. The mixture is left to react overnight, admixed with 4 g of silica and evaporated to dryness. The product is purified by chromatography on silica gel, eluting with a 95/5 then 93/7 and 90/10 mixture of dichloromethane and methanol. The product is recrystallized from a mixture of methanol and diisopropyl ether, to give 0.429 g of product in the form of white crystals. melting point ( C.): 200-203 LC-MS: M+H=351 1H NMR (DMSO) delta (ppm): 8.30 (s, 1H), 8.20 (s, 1H), 7.80 (d+m, 3H), 7.65 (d, 2H), 7.45-7.20 (m, 7H), 4.35 (s, 2H), 4.25 (d, 2H)

2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various.

Reference£º
Patent; Sanofi-Aventis; US2006/14830; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 147959-19-1

The synthetic route of 147959-19-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.147959-19-1,(S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate,as a common compound, the synthetic route is as follows.

(S)-2,2-Dimethyl-4-(2-oxo-ethyl)-oxazolidine-3-carboxylic acid t-butyl ester (2.29 g, 9.44 mmol) was dissolved in dry tetrahydrofuran (25 mL). Then at -78 C., allyl magnesium bromide (1.0M in diethyl ether, 9.9 mL) was added. The mixture was warmed to -15 C. and stirred for 2 h. The mixture was extracted with diethyl ether and aqueous citric acid solution. The organic layer was washed with saturated sodium chloride solution, dried over sodium sulfate and solvents were evaporated to afford (S)-4-(2-hydroxy-pent-4-enyl)-2,2-dimethyl-oxazolidine-3-carboxylic acid tert-butyl ester (2.54 g) as an oil.

The synthetic route of 147959-19-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Berthel, Steven Joseph; Brinkman, John A.; Hayden, Stuart; Haynes, Nancy-Ellen; Kester, Robert Francis; McDermott, Lee Apostle; Qian, Yimin; Sarabu, Ramakanth; Scott, Nathan Robert; Tilley, Jefferson Wright; US2009/264445; (2009); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 147959-19-1

147959-19-1 (S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate 10586317, aoxazolidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.147959-19-1,(S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate,as a common compound, the synthetic route is as follows.

To a stirred solution of N,N-diisopropylamine (1.74 ml) in tetrahydrofuran (8 ml) at -78 C. was added dropwise a solution of n-butyllithium (7.71 ml, 1.6 M in hexane) and the reaction mixture was then warmed to 0 C. for 15 min. After re-cooling to -78 C., a solution of diethyl 1-phenylethyl phosphonate (2.76 ml) in tetrahydrofuran (8 ml) was added dropwise. The mixture was stirred at -78 C. for 30 min and then a solution of (S)-2,2-dimethyl-4-(2-oxo-ethyl)-oxazolidine-3-carboxylic acid tert-butyl ester (2.00 g, CAS 147959-19-1) in tetrahydrofuran (8 ml) was added dropwise over 20 min. The mixture was then allowed to warm to room temperature and stirring continued at room temperature for 48 hours. The mixture was then quenched by addition of aqueous hydrochloric acid (2N) and then made basic by addition of aqueous sodium hydroxide solution (1 N). The mixture was taken up in ethyl acetate and the phases separated. The organic layer was washed sequentially with water and with saturated brine, dried over Na2SO4 and concentrated in vacuo. The residue was purified by column chromatography (SiO2, heptane/EtOAc gradient) to yield a yellow oil, (1.16 g, 44%); MS (ISP): 332.1 ([M+H]+).

147959-19-1 (S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate 10586317, aoxazolidine compound, is more and more widely used in various.

Reference£º
Patent; Galley, Guido; Goergler, Annick; Groebke Zbinden, Katrin; Norcross, Roger; US2010/29589; (2010); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 17016-83-0

The synthetic route of 17016-83-0 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.17016-83-0,(S)-4-Isopropyl-2-oxazolidinone,as a common compound, the synthetic route is as follows.

REFERENCE EXAMPLE 19 (S)4-(1-Methylethyl)-3-(1-oxo-3-phenylpropyl)-2-oxazolidinone To a solution of 2.5 g of (4S)4-isopropyl-2-oxazolidinone in 60 ml of dry tetrahydrofuran under argon, cooled to -78 C. was added 8 ml n-butyllithium (2.5M in hexane). The suspension was allowed to warm slowly to 0 C. and then cooled to -78 C. (total time 50 minutes). To the well stirred suspension was added dropwise 3.3 ml of 3-phenylpropionyl chloride. The resulting solution was stirred at -78 C. for 2 hours and at 0 C. for 0.5 hour. To the solution was added 20 ml of saturated sodium bicarbonate and mixture concentrated under reduced pressure. The suspension was diluted with 20 ml of water and extracted with 150 ml of ethyl acetate. The extract was washed with brine, dried (Na2 SO4) and the solvent removed to give 5.67 g of colorless oil. This oil crystallized on standing and the crystals were triturated with hexane to give 5.0 g of crystals; [alpha]D26 +71+-1 (c, 1.182, CHCl3).

The synthetic route of 17016-83-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; American Cyanamid Company; US5104869; (1992); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 108149-63-9

As the paragraph descriping shows that 108149-63-9 is playing an increasingly important role.

108149-63-9, (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a stirred solution of 6 (0.100 g, 0.433 mmol), appropriate substituted phenol (0.649 mmol) and PPh3 (0.182 g,0.693 mmol) in anhydrous toluene (5 mL) was added DIAD(0.14 mL, 0.693 mmol) at 80 C. After 3 h, EtOAc (40 mL)was added to the resulting solution. The organic layer was washed with 0.5 M aqueous NaOH (40 mL) and water (2 X40 mL), dried over Na2SO4, filtered and concentrated. The residue was purified by flash silica gel column chromatography eluting with Hexanes/EtOAc (9:1) or (95:5) to afford compounds 7a-s.

As the paragraph descriping shows that 108149-63-9 is playing an increasingly important role.

Reference£º
Article; Andrade, Saulo F.; Campos, Edmar F.S.; Teixeira, Claudia S.; Bandeira, Cristiano C.; Lavorato, Stefania N.; Romeiro, Nelilma C.; Bertollo, Caryne M.; Oliveira, Monica C.; Souza-Fagundes, Elaine M.; Alves, Ricardo J.; Medicinal Chemistry; vol. 10; 6; (2014); p. 609 – 618;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 875444-08-9

875444-08-9 (4S,5R)-5-(3,5-Bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one 23583229, aoxazolidine compound, is more and more widely used in various.

875444-08-9, (4S,5R)-5-(3,5-Bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a stirred suspension of sodium hydride (60% dispersion in mineral oil; 1.3 g; 0.0325 mol) in THF (60mL) at 0 C under N2 was added dropwise a solution of (4S,5ft)-5-[3,5-bis(trifluoromethyl)phenyi]-4-methyl-l,3-oxazolidin-2-one (Example 17) (4.077 g; 0.013 mol) in THF (50 mL). Gas evolution wasobserved. The resultant mixture stirred at 0 C for 30 min prior to addition of a solution of 2-(bromomethyl)-l-iodo-4-(trifluoromethyl)benzene (4.754 g; 0.013 mol) in THF (20 mL). The reactionwas allowed to warm to room temperature and stirred for 14 h. The reaction was carefully quenchedwith H2O (15 mL) and partitioned between EtOAc (250 mL) and H2O (75 mL). The aqueous layer wasextracted with EtOAc (3 x 100 mL). Combined organic layers were washed with brine (100 mL), dried(MgSO4), filtered and concentrated in vacua. The residue was purified by flash chromatography (0-20%EtOAc/hexanes gradient) to afford 6.4 g (82.5%) of (4S,5fl)-5-[3,5-bis(trifluoromemyl)phenyl]-3-[2-iodo-5-(trifluoromethyl)benzyl]-4-methyl-l,3-oxazolidin-2-one as a white solid. LCMS = 598.1 (M+l)+.*H NMR (CDC13, 500 MHz): 5 8.03 (d, J = 8.2 Hz, 1 H), 7.90 (s, 1 H), 7.79 (s, 2 H), 7.58 (s, 1H), 7.30(dd, J = 8.2 Hz, J = 2.0 Hz, 1 H), 5.76 (d, J = 8 Hz, 1 H), 4.88 (d, J = 15.8 Hz, 1 H), 4.37 (d, J = 15.8 Hz,1 H), 4.09-4.02 (m, 1 H), 0.8 (d, J = 6.6 Hz, 3 H).

875444-08-9 (4S,5R)-5-(3,5-Bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one 23583229, aoxazolidine compound, is more and more widely used in various.

Reference£º
Patent; MERCK & CO., INC.; WO2006/14357; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 147959-19-1

As the paragraph descriping shows that 147959-19-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.147959-19-1,(S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate,as a common compound, the synthetic route is as follows.

With key building block 6 in hand, its nitroaldol (Henry) reaction with nitromethane was examined (Table 1). LiAlH418- TBAF19- as well as t-BuOK20-catalyzed Henry reactions led to nitro alcohols 12 and 13 with low diastereoselectivity, reflecting that the existing stereogenic center is too far away from the newly created one to exert appreciable asymmetric induction (Table 1, entries 1-3).21 An obvious way of resolving this problem was the introduction of additional chiral information, i.e. application of a chiral catalyst. In fact double stereodifferentiation using Shibasaki’s well established heterobimetallic (,S)-BINOL catalyst 1422 (5 mol%, THF, -40 C, 3 d) led to 12 with high diastereoselectivity albeit in low yield (Table 1, entry 4).Recently, other highly efficient chiral catalysts for asymmetric Henry reactions have been developed. Thus, Corey23 and Maruoka24 have utilized chiral quaternary ammonium fluorides as catalysts while Trost25 has presented a dinuclear zinc catalyst. Salen-cobalt(II) complexes have been used by Yamada whereas J¡ãrgensen and Evans have introduced bis(oxazoline)-coprhoer(II) complexes. The latter seemed to be the catalysts of choice, at least for aliphatic aldehydes, with respect to attainable yields and degree of stereoselectivity. EPO Table 1. Diastereoselective Henry Reaction of Aldehyde 6 with Nitromethaneyield ratio0 entry catalyst conditions(%)a 12:131 LiAlH4 THF, rt 53 56:442 TBAF THF, rt 33 43:573 r-BuOK t- 72 23:77BuOH/THF,00C4 14 THF, -40 C 45 98:25 {Cu[(+> EtOH, rt 87 92:815]} (OAc)26 (CuK-)- EtOH, rt 85 9:9115]}(OAc)27 {Cu[(+> EtOH, rt 94 97:316]}(OAc)28 (Cu[(-)- EtOH, rt 91 8:9216I)(OAc)2a isolated yield b determined by HPLC analysis of crude reaction mixtures EPO Indeed application of Evans’ bis(oxazoline) copper(II) acetate-based catalysts {Cu[(+)- 15]}(OAc)2 and in particular {Cu[(+)-16]}(OAc)2 (5 mol%, EtOH, rt, 5 d) gave the desired nitro alcohol 12 both with high diastereoselectivity and in high yield (Table 1 , entries 5 and 7). Finally, to obtain selectively diastereomer 13, aldehyde 6 was reacted with nitromethane in the presence of the enantiomeric catalysts {Cu[(-)-15]}(OAc)2 and {Cu[(-)-16]} (OAc)2 respectively. In these cases slightly lower stereoselectivities and yields were observed reflecting a mismatched pairing (Table 1, entries 6 and 8).

As the paragraph descriping shows that 147959-19-1 is playing an increasingly important role.

Reference£º
Patent; LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN; WO2006/94770; (2006); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 108149-63-9

As the paragraph descriping shows that 108149-63-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.108149-63-9,(R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate,as a common compound, the synthetic route is as follows.

General procedure: To a stirred solution of 6 (0.100 g, 0.433 mmol), appropriate substituted phenol (0.649 mmol) and PPh3 (0.182 g,0.693 mmol) in anhydrous toluene (5 mL) was added DIAD(0.14 mL, 0.693 mmol) at 80 C. After 3 h, EtOAc (40 mL)was added to the resulting solution. The organic layer was washed with 0.5 M aqueous NaOH (40 mL) and water (2 X40 mL), dried over Na2SO4, filtered and concentrated. The residue was purified by flash silica gel column chromatography eluting with Hexanes/EtOAc (9:1) or (95:5) to afford compounds 7a-s.

As the paragraph descriping shows that 108149-63-9 is playing an increasingly important role.

Reference£º
Article; Andrade, Saulo F.; Campos, Edmar F.S.; Teixeira, Claudia S.; Bandeira, Cristiano C.; Lavorato, Stefania N.; Romeiro, Nelilma C.; Bertollo, Caryne M.; Oliveira, Monica C.; Souza-Fagundes, Elaine M.; Alves, Ricardo J.; Medicinal Chemistry; vol. 10; 6; (2014); p. 609 – 618;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 2346-26-1

2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 24 – Synthesis of [(5)-4-(3-cyano-benzenesulfonyl)-2-(2,4-dioxo-oxazolidin-3- ylmethyl)-3,4-dihydro-2H-benzo[l,4]oxazin-6-yl]-carbamic acid tert-butyl ester (24) [0282] To a solution of triphenylphosphine (1.2 g, 4.7 mmol) in tetrahydrofuran (7.5 mL) at 0 C was added diisopropylazodicarboxylate (0.9 mL, 4.7 mmol). After fifteen minutes, [(i?)-4-(3-cyano-benzenesulfonyl)-2-hydroxymethyl-3,4-dihydro-2H-benzo[l,4]oxazin-6-yl]- carbamic acid tert-butyl ester (1.4 g, 3.1 mmol) and 2,4-oxazolidinedione (0.3 g, 3.1 mmol) in tetrahydrofuran (7.5 mL) was added dropwise. After the addition was complete the mixture was allowed to warm to room temperature. The mixture was stirred an additional three hours, and partitioned between dichloromethane and 1 N HCl. The organic layer was dried (Na2SC”4) and concentrated to afford [(5)-4-(3-cyano-benzenesulfonyl)-2-(2,4-dioxo-oxazolidin-3-ylmethyl)- 3,4-dihydro-2H-benzo[l,4]oxazin-6-yl]-carbamic acid tert-butyl ester. LCMS ESI calculated for C24H25N408S (M+H)+: 529, Found: 529.

2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various.

Reference£º
Patent; MERCK SHARP & DOHME CORP.; LYCERA CORPORATION; AICHER, Thomas D.; VAN HUIS, Chad A.; THOMAS, William D.; MACLEAN, John K.; ANDRESEN, Brian M.; BARR, Kenneth J.; BIENSTOCK, Corey E.; ANTHONY, Neville J.; DANIELS, Matthew; LIU, Kun; LIU, Yuan; WHITE, Catherine M.; LAPOINTE, Blair T.; SCIAMMETTA, Nunzio; SIMOV, Vladimir; WO2015/95795; (2015); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem